# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2662 | 0 | 1.0000 | Nasal Carriage of Methicillin-Resistant Staphylococcus Sciuri Group by Residents of an Urban Informal Settlement in Kenya. BACKGROUND: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. OBJECTIVES: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. METHOD: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK(®)2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. CONCLUSION: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts. | 2023 | 37529492 |
| 2660 | 1 | 0.9999 | Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria. | 2021 | 33934873 |
| 2663 | 2 | 0.9998 | Antimicrobial susceptibility profile of oral and rectal microbiota of non-human primate species in Ghana: A threat to human health. BACKGROUND: The potential for the transfer of zoonotic diseases, including bacteria between human and non-human primates (NHPs), is expected to rise. It is posited that NHPs that live in close contact with humans serve as sentinels and reservoirs for antibiotic-resistant bacteria. OBJECTIVES: The objective was to characterize the oral and rectal bacteria in Ghanaian NHPs and profile the antimicrobial susceptibility of the isolated bacteria. METHODS: Oral and rectal swabs were obtained from 40 immobilized wild and captive NHPs from 7 locations in Ghana. Standard bacteriological procedures were used in the isolation, preliminary identification, automated characterization and antimicrobial susceptibility test (AST) of bacteria using the Vitek 2 Compact system. RESULTS: Gram-negative bacteria dominated isolates from the rectal swabs (n = 76, 85.4%), whereas Gram-positive bacteria were more common in the oral swabs (n = 41, 82%). Staphylococcus haemolyticus (n = 7, 14%) was the most occurring bacterial species isolated from the oral swabs, whereas Escherichia coli (n = 32, 36%) dominated bacteria isolates from rectal swabs. Enterobacter spp. had the highest (39%) average phenotypic resistance to antimicrobials that were used for AST, whereas a trend of high resistance was recorded against norfloxacin, Ampicillin and Tetracycline in Gram-negative bacteria. Similarly, among Gram-positive bacteria, Staphylococcus spp. had the highest (25%) average phenotypic resistance to antimicrobials used for AST, and a trend of high resistance was recorded against penicillin G and oxacillin. CONCLUSIONS: This study has established that apparently healthy NHPs that live in anthropized environments in Ghana harbour zoonotic and antimicrobial resistant bacteria. | 2023 | 37733757 |
| 2661 | 3 | 0.9998 | Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. BACKGROUND AND AIM: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. MATERIALS AND METHODS: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital's cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. RESULTS: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. CONCLUSION: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants. | 2022 | 35698521 |
| 2680 | 4 | 0.9998 | Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1-2, rep3, rep5-6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans. | 2022 | 35326843 |
| 2679 | 5 | 0.9998 | Detection and Molecular Characterization of Staphylococci from Eggs of Household Chickens. Eggs are a healthy and nutritious food source, but may be contaminated by bacteria. Previous studies have reported the presence of staphylococci in eggs of farmed chickens, but no study has evaluated the staphylococcal population of eggs from household chickens. In this study, staphylococci from eggs (n = 275) of household chickens collected from November 2016 to March 2017 from different villages of Khyber Pakhtunkhwa province, Pakistan, were characterized. Seven species of staphylococci were identified from 65 eggs, including the predominant species, Staphylococcus xylosus (49/275; 17.8%). S. xylosus isolates (n = 73) were tested for antimicrobial susceptibility, presence of resistance genes, genetic relatedness, and inhibitory activity against other bacteria. The majority of isolates were resistant to oxacillin (83.6%) and tetracycline (24.7%), but also exhibited resistance to daptomycin and linezolid (5.5% each). Of the 10 resistance genes tested, isolates were only positive for mecA (35.6%; 26/73), mecC/C1 (2.7%; 2/73), and tet(K) (14/73; 19%). Using pulsed-field gel electrophoresis (PFGE), nine clusters had identical PFGE patterns. Isolates produced inhibitory activity against a broad spectrum of bacteria; 20.5%, 19.2%, 17.8%, and 16.4% of S. xylosus were able to inhibit growth of Salmonella enterica serotype Typhi, methicillin-susceptible Staphylococcus aureus, Escherichia coli, and methicillin-resistant Staphylococcus aureus, respectively. This study demonstrated the presence of genetically related antimicrobial-resistant S. xylosus from eggs from household chickens. Like table eggs, eggs of household chickens also contain staphylococci that may be resistant to antimicrobials used to treat human infections. These data will allow comparison between staphylococci from eggs from different sources and may indicate the relative safety of eggs from household chickens. Further study of these egg types and their microbial composition is warranted. | 2019 | 31009262 |
| 2400 | 6 | 0.9998 | Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements. | 2007 | 18251398 |
| 2677 | 7 | 0.9998 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 2358 | 8 | 0.9998 | Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Background: Biofilm formation in S. aureus may reduce the rate of penetration of antibiotics, thereby complicating treatment of infections caused by these bacteria. The aim of this study was to correlate biofilm-forming potentials, antimicrobial resistance, and genes in S. aureus isolates. Methods: A total of 64 milk samples were analysed, and 77 S. aureus were isolated. Results: Seventy (90.9%) isolates were biofilm producers. The ica biofilm-forming genes were detected among 75.3% of the isolates, with icaA being the most prevalent (49, 63.6%). The icaB gene was significantly (P = 0.027) higher in isolates with strong biofilm formation potentials. High resistance (60%-90%) of the isolates was observed against ceftriaxone, vancomycin, and penicillin, and 25 (32.5%) of S. aureus showed multidrug resistance (MDR) to at least three antibiotics. Five resistance genes, namely blaZ (29, 37.7%), vanC (29, 37.7%), tetK (24, 31.2%), tetL (21, 27.3%), and msrA/B (16, 20.8%) were detected. Most MDR phenotypes possessed at least one resistance gene alongside the biofilm genes. However, no distinct pattern was identified among the resistance and biofilm phenotypes. Conclusions: The high frequency of potentially pathogenic MDR S. aureus in milk samples intended for human consumption, demonstrates the public health relevance of this pathogen in the region. | 2020 | 32252278 |
| 2656 | 9 | 0.9998 | Occurrence and Antimicrobial Resistance of Enterococci Isolated from Goat's Milk. INTRODUCTION: Enterococci are widespread, being part of the bacterial flora of humans and animals. The food chain can be therefore considered as the main route of transmission of antibiotic resistant bacteria between the animal and human populations. Milk in particular represents a source from which resistant bacteria can enter the human food chain. The aim of the study was to determine the occurrence and resistance to antimicrobial agents of Enterococcus spp. strains isolated from raw goat's milk samples. MATERIAL AND METHODS: A total of 207 goat's milk samples were collected. Samples were cultivated on selective media and confirmed as E. faecium or E. faecalis and screened for selected resistance genes by PCR. Drug susceptibility determination was performed by microdilution on Sensititre EU Surveillance Enterococcus EUVENC Antimicrobial Susceptibility Testing (AST) Plates and Sensititre US National Antimicrobial Resistance Monitoring System Gram Positive CMV3AGPF AST Plates. RESULTS: Enterococcal strains totalling 196 were isolated, of which 40.8% were E. faecalis and 15.3% were E. faecium. All tested isolates were susceptible to linezolid, penicillin and tigecycline. For most other antimicrobials the prevalence of resistance was 0.5-6.6% while high prevalence of quinupristin/dalfopristin (51.5%), tetracycline (30%) and lincomycin (52%) resistance was observed. CONCLUSION: This study affords better knowledge concerning the safety of raw goat's milk in terms of the enterococci possible to isolate from this foodstuff. It seems that enterococci in milk are still mostly susceptible to antimicrobials of major concern as multiply resisted drugs, such as gentamycin and vancomycin. However, the presence of multi-resistant strains in goat milk is cause for apprehension. | 2021 | 35111998 |
| 2678 | 10 | 0.9998 | Phenotypic and molecular characterization of multidrug-resistant mastitis causing pathogens in dairy cattle. This study focused on isolating antibiotic-resistant mastitogens from cow milk; 57% of 100 samples tested positive by California mastitis test. Bacterial species from each milk sample were isolated and identified using Vitek® 2 automated system. Out of the 167 bacterial strains isolated, 14 were multidrug-resistant (MDR) and were further identified as belonging to Staphylococcus spp. Enterobacter spp. Morganella spp. and Elizabethkingia spp. Staphylococcus strains showed the highest resistance by phenotypic and genotypic screening, with 8% of mastitis isolates identified as MDR. These MDR bacterial strains were also found to harbour antibiotic resistance genes such as mecA (21%), blaZ (43%), gyrA (50%), and gyrB (59%). The tissue culture plate assay showed 11 multidrug-resistant bacteria as strong biofilm formers and the biofilm-related atlE gene was analysed from Staphylococcal strain M33.1. The findings highlight a public health risk from resistant dairy bacteria, emphasizing prophylactic measures and responsible antimicrobial use to prevent zoonotic transmission. | 2025 | 41115007 |
| 2397 | 11 | 0.9998 | Antimicrobial resistance in Enterococcus strains isolated from healthy domestic dogs. Enterococci are opportunistic bacteria that cause severe infections in animals and humans, capable to acquire, express, and transfer antimicrobial resistance. Susceptibility to 21 antimicrobial agents was tested by the disk diffusion method in 222 Enterococcus spp. strains isolated from the fecal samples of 287 healthy domestic dogs. Vancomycin and ampicillin minimum inhibitory concentrations (MICs) and high-level aminoglycoside resistance (HLAR) tests were also performed. Isolates showed resistance mainly to streptomycin (88.7%), neomycin (80.6%), and tetracycline (69.4%). Forty-two (18.9%) isolates showed an HLAR to streptomycin and 15 (6.7%) to gentamicin. Vancomycin and ampicillin MIC values showed 1 and 18 resistant strains, respectively. One hundred and thirty-six (61.2%) strains were classified as multidrug resistant and six (2.7%) strains as possibly extensively drug-resistant bacteria. Enterococcus faecium and Enterococcus faecalis were the most prevalent antimicrobial resistant species. Companion animals, which often live in close contact with their owners and share the same environment, represent a serious source of enterococci resistant to several antibiotics; for this reason, they may be a hazard for public health by providing a conduit for the entrance of resistance genes into the community. | 2017 | 27976593 |
| 2377 | 12 | 0.9998 | Multidrug-resistant and enterotoxigenic methicillin-resistant Staphylococcus aureus isolated from raw milk of cows at small-scale production units. OBJECTIVE: Staphylococcus aureus (S. aureus) has evolved as one of the most significant bacteria causing food poisoning outbreaks worldwide. This study was carried out to investigate the prevalence, antibiotic sensitivity, virulence, and enterotoxin production of S. aureus in raw milk of cow from small-scale production units and house-raised animals in Damietta governorate, Egypt. MATERIAL AND METHODS: The samples were examined bacteriologically, and antimicrobial sensitivity testing was carried out. Moreover, isolates were characterized by the molecular detection of antimicrobial resistance, virulence, and enterotoxin genes. RESULTS: Out of 300 milk samples examined, S. aureus was isolated from 50 samples (16.7%). Antibiotic sensitivity testing revealed that isolates were resistant to β-lactams (32%), tetracycline (16%), and norfloxacin (16%); however, they showed considerable sensitivity to ceftaroline and amikacin (72%). Multidrug-resistance (MDR) has been observed in eight isolates (16%), with a MDR index (0.5) in all of them. Of the total S. aureus isolates obtained, methicillin-resistant S. aureus (MRSA) has been confirmed molecularly in 16/50 (32%) and was found to carry mecA and coa genes, while virulence genes; hlg (11/16, 68.75%) and tsst (6/16, 37.5%) were amplified at a lower percentage, and they showed a significant moderate negative correlation (r = -0.59, p-value > 0.05). Antibiotic resistance genes have been detected in resistant isolates relevant to their phenotypic resistance: blaZ (100%), tetK (50%), and norA (50%). Fifty percent of MRSA isolates carried the seb enterotoxin gene. CONCLUSION: High detection rate of MRSA and MDR isolates from milk necessitates the prompt implementation of efficient antimicrobial stewardship guidelines, especially at neglected small-scale production units. | 2022 | 35445112 |
| 2681 | 13 | 0.9998 | Determination of the Prevalence and Antimicrobial Resistance of Enterococcus faecalis and Enterococcus faecium Associated with Poultry in Four Districts in Zambia. The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1-35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3-46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3-16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns. | 2023 | 37107019 |
| 2354 | 14 | 0.9998 | Resistance profiles of Staphylococcus aureus isolates against frequently used antibiotics at private sector laboratories in Jordan. BACKGROUND AND OBJECTIVES: Staphylococcus aureus (S. aureus) is one of the most important pathogens, responsible for a range of infections. This study aimed to assess resistance patterns in S. aureus isolates obtained from certain private-sector laboratories against commonly used antimicrobial agents. MATERIALS AND METHODS: The process involved collecting various samples from several private laboratories and then identifying S. aureus isolates using biochemical characterization. The antibiotic susceptibility of these isolates was determined by disc diffusion method. Furthermore, Rt-PCR was employed to identify two genes namely the methicillin/oxacillin resistance genes (mecA), and (SCCmec). RESULTS: The findings of the current study exhibited that females constituted a larger proportion of the participants (59.1%) compared to males (40.9%), with a mean participant age of 40.82 years. Gram-positive bacteria were more prevalent (71.3%) than Gram-negative bacteria (18.3%), with S. aureus being the most frequent isolate (60.9%). Urine samples represented the highest collected sample type (47.8%). Out of the 115 bacterial isolates, 85.2% exhibited multidrug resistance to antibiotics such as cefazolin, gentamicin, vancomycin, and ceftazidime. Clindamycin was the most effective antibiotic, with a sensitivity rate of 62.9%, followed by teicoplanin and meropenem, each with a sensitivity rate of 52.9%. Methicillin-resistant Staphylococcus aureus (MRSA) strains were susceptabile to vancomycin and teicoplanin. The methicillin/oxacillin resistant isolates showed significant association with mecA and SCCA genes. CONCLUSION: This study highlighted the multi-drug resistance in S. aureus isolates, stressing the need for stringent antibiotic stewardship, continuous surveillance, and further research into alternative treatments, including novel antibiotics and combination therapy, to combat resistant strains. | 2025 | 40337673 |
| 2657 | 15 | 0.9998 | Investigating the Prevalence of Enterotoxin and Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Meat and Edible Viscera of Broiler Chickens. BACKGROUND: The responsible for staph infection is methicillin-resistant Staphylococcus aureus (MRSA) which has a long and difficult treatment process due to resistance to this type of antibiotic. This study is designed to investigate the distribution and frequency of antibiotic-resistant genes and MRSA enterotoxins isolated from the meat and edible viscera of broiler chickens, which are responsible for pathogenicity in humans. MATERIALS AND METHODS: A total of 523 meat and edible viscera of broiler chicken collected from farms in Shahrekord, Iran. The antibiogram test of 142 MRSA isolates was performed by Kirby-Bauer diffusion disc. Sensitivity or resistance of MRSA was tested on 13 different antibiotics. DNA extracted from MRSA was screened by PCR technique for the presence of antibiotic-resistant and enterotoxin genes. RESULTS: Staphylococcus aureus (S. aureus) isolated with frequency of 51.05% (267 of 523). The presence of mecA gene in S. aureus was examined to detect the MRSA. The most antibiotic-resistance responsible genes and the pathogenic enterotoxin genes were identified. MRSA was identified by positive amplification of mecA in 53.18% (142 of 267) of S. aureus isolates. S. aureus antimicrobial resistance was most frequently noted against tetracycline (94.37%), ampicillin (88.73%) and penicillin (71.83%). Out of 51 examined isolates, 47 isolates exhibited the sea (92.15%), and 7 isolates exhibited the sej (13.72%). CONCLUSION: The results indicated high prevalence of MRSA in broilers, which is very worrying issue. In addition, in the present study, it was observed that due to the increase in the use of antibiotics in poultry farming, bacteria resistant to methicillin and other antibiotics have a high prevalence. Now, with the knowledge that the consumption of broiler chicken is very high all over the world and with the increasing trend of antibiotic consumption, this issue has become a concern at the global health level. The presence of antibiotic-resistance and enterotoxigenic genes in MRSA bacteria is a critical threat to human nutrition, making consuming contaminated meat and edible viscera of broiler chickens unsafe. | 2025 | 40613255 |
| 2376 | 16 | 0.9998 | Molecular characterization and antimicrobial susceptibility of methicillin-resistant staphylococcus aureus isolates from clinical samples and asymptomatic nasal carriers in Istanbul (Turkey). BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has been a widespread problem in Turkish hospitals. AIMS: The aim of this study was to investigate the staphylococcal toxin genes of the clinical and nasal MRSA isolates, and their antibiotic resistance profiles. MATERIALS AND METHODS: Isolation of nasal and clinical bacteria was done following standard microbiological methods. The presence of antimicrobial resistance genes (mec A, pvl, tsst-1, and SEs genes) was determined using the real-time polymerase chain reaction (PCR) assay. RESULTS: Among nasal MRSA isolates, 66.7% were toxigenic. The distribution of genes was as follows: pvl 26.7%, tsst-1 3.3%, and SEs 36.7%. Therefore, the nasal MRSA isolates had a rate of 23.3% multidrug resistance (MDR) pattern to the non-beta-lactams antibiotics. All (100%) clinical MRSA isolates were found to be toxigenic. The distribution of genes was as follows; pvl 10%, tsst-1 6.7%, and SEs 100%. The clinical MRSA isolates had a rate of 60% MDR. CONCLUSIONS: Following detection of pvl, tsst-1, and SEs among nasal and clinical MRSA isolates, and the presence of high antimicrobial resistance, the spread of these strains may be an additional factor contributing to the emergence of community-acquired (CA)-MRSA and hospital-acquired (HA)-MRSA. This study is the first to determine the resistance to linezolid and tigecycline in both nasal and clinical MRSA isolates, for the first time in Turkey. All nasal and clinical MRSA isolates were uniformly susceptible to vancomycin and quinupristin-dalfopristin. Our findings show that MRSA infections in Turkey can be empirically treated with vancomycin and quinupristin-dalfopristin based on the lack of demonstrable resistance to these drugs. | 2021 | 34290175 |
| 2658 | 17 | 0.9998 | Rapid detection of major enterotoxin genes and antibiotic resistance of Staphylococcus aureus isolated from raw milk in the Yazd province, Iran. INTRODUCTION: Raw milk is a nutrient-rich food, but it may harbour harmful bacteria, such as enterotoxigenic Staphylococcus aureus (S. aureus), which can cause staphylococcal food poisoning. Antibiotic resistance of S. aureus in raw milk can increase the risk of such infections, particularly among susceptible individuals. OBJECTIVE: This study aimed to investigate the prevalence of enterotoxin genes a, d, g, i and j and the antibiotic resistance of S. aureus isolated from raw milk samples. METHODS: During a 6-month sampling period, 60 raw milk specimens were obtained from diverse locations in Yazd province, Iran. Antibiogram profiling was conducted via the disc diffusion method. In addition, staphylococcal enterotoxin (SE) genes a, d, g, i, and j were detected through real-time PCR analysis. RESULTS: Bacteriological assays confirmed the presence of S. aureus in 11 samples (18.3%). All isolates demonstrated 100% resistance to penicillin G but exhibited sensitivity to vancomycin, while resistance to other antibiotics ranged from 36.4% to 45.5%. The prevalence of enterotoxin genes in these strains showed variable distribution, with sea being the predominant SE (45.5%), followed by sed (36.4%), seg (18.2), sej and sei (9.1% each). CONCLUSIONS: This study discovered the presence of multiple enterotoxins in S. aureus strains obtained from raw milk samples. These strains also demonstrated resistance to a variety of antibiotics. Since enterotoxigenic S. aureus is known to cause human food poisoning, monitoring food hygiene practices, especially during raw milk production, is critical. | 2024 | 38519836 |
| 2701 | 18 | 0.9998 | Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. BACKGROUND AND AIM: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. MATERIALS AND METHODS: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. RESULTS: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. CONCLUSION: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health. | 2020 | 32255968 |
| 2702 | 19 | 0.9998 | Assessment of the presence of multidrug-resistant Escherichia coli, Salmonella and Staphylococcus in chicken meat, eggs and faeces in Mymensingh division of Bangladesh. The emergence of bacteria that is resistant to several drugs of clinical importance poses a threat to successful treatment, a phenomenon known as multidrug resistance that affects diverse classes of antibiotics. The purpose of this study was to evaluate the prevalence of multidrug-resistant Escherichia coli, Salmonella spp. and Staphylococcus aureus in chicken egg, meat and faeces from four districts of Bangladesh. A total of 120 chicken samples were collected from different poultry farms. Conventional culture and molecular detection methods were used for identification of bacterial isolates from the collected samples followed by antibiotic susceptibility test through the disc diffusion method, finally antibiotic resistant genes were detected by PCR. E. coli, Salmonella spp. and Staphylococcus aureus were detected in meat, egg and faecal samples. Antimicrobial susceptibility results revealed isolates from faeces were 100 % resistant to amoxicillin, while all S. aureus and Salmonella sp. from faeces were resistant to doxycycline, tetracycline and erythromycin. Salmonella spp. isolates from eggs indicated 100 % resistance to erythromycin, amoxycillin, while E. coli were 100 % resistant to erythromycin. E. coli and S. aureus from meat were 100 % resistant to amoxicillin and erythromycin. However, Salmonella spp. from eggs were 100 % susceptible to doxycycline, gentamicin, levofloxacin and tetracycline. The mecA and aac(3)-IV genes were only found in S. aureus and E. coli, respectively. The Sul1, tetB, and aadA1 were highest in Salmonella spp. and S. aureus, while the sul1, tetA and bla (SHV) were higher in E. coli. Isolates from all samples were multidrug resistant. These findings indicate a high risk of transmission of resistance genes from microbial contamination to food of animal origin. The study emphasizes the need for effective biosecurity measures, responsible antibiotic use, and strict regulations in poultry production to prevent the spread of antibiotic resistance. | 2024 | 39281621 |