High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
264501.0000High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds.202133487603
289110.9995Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Mediterranean herring gulls (Larus cachinnans) were investigated as a possible reservoir of antibiotic resistant bacteria and of cassette-borne resistance genes located in class 1 integrons. Two hundred and fourteen isolates of the family Enterobacteriaceae were collected from cloacal swabs of 92 chicks captured in a natural reserve in the North East of Italy. They showed high percentages of resistance to ampicillin and streptomycin. High percentages of resistance to trimethoprim/sulfamethoxazole were found in Proteus and Citrobacter and to chloramphenicol in Proteus. Twenty-two (10%) isolates carried the intI1 gene. Molecular characterization of the integron variable regions showed a great diversity, with the presence of 11 different cassette arrays and of one integron without integrated cassettes. The dfrA1-aadA1a and aadB-aadA2 cassette arrays were the most frequently detected. Also the estX cassette, alone or in combination with other cassettes, was detected in many isolates. From this study it is concluded that the enteric flora of Mediterranean herring gulls may act as a reservoir of resistant bacteria and of resistance genes. Due to their feeding habits and their ability to fly over long distances, these free-living birds may facilitate the circulation of resistant strains between waste-handling facilities, crops, waters, and urban areas.200818476779
289420.9995Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p < 0.0000001). These data suggest that there may have been horizontal exchange of AR genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.201121385089
289530.9994Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates.201222854332
293540.9994Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment.202236611686
292150.9994Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants.200717953612
289260.9994Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments. This study assessed the distribution of class 1 integrons in commensal bacteria isolated from agricultural and nonfarm environments, and the transferability of class 1 integrons to pathogenic bacteria. A total of 26 class 1 integron-positive isolates were detected in fecal samples from cattle operations and a city park, water samples from a beef ranch and city lakes, and soil, feed (unused), manure, and compost samples from a dairy farm. Antimicrobial susceptibility testing of class 1 integron-positive Enterobacteriaceae isolates from city locations displayed multi-resistance to 12-13 out of the 22 antibiotics tested, whereas class 1 integron-positive Enterobacteriaceae isolates from cattle operations only displayed tetracycline resistance. Most class 1 integrons had one gene cassette belonging to the aadA family that confers resistance to streptomycin and spectinomycin. One isolate from a dog fecal sample collected from a city dog park transferred its class 1 integron to a strain of Escherichia coli O157:H7 at a frequency of 10(-7) transconjugants/donor by in vitro filter mating experiments under the stated laboratory conditions. Due to the numerous factors that may affect the transferability testing, further investigation using different methodologies may be helpful to reveal the transferability of the integrons from other isolates. The presence of class 1 integrons among diverse commensal bacteria from agricultural and nonfarm environments strengthens the possible role of environmental commensals in serving as reservoirs of antibiotic resistance genes.201020704511
289670.9994Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Resistance transfer from animals to humans (and vice versa) is a frequently discussed topic in human and veterinary medicine, albeit relevant studies focus mainly on phenotypic antibiotic resistance. In order to get a comparative insight regarding the distribution of selected resistance genes [tet(A/B/C/D/M/K/L/O/S/W/Z), sulI, II, III, str(A/B), aad(A)] in Escherichia coli of different origins, phenotypically tetracycline resistant isolates of porcine and human origin (n=137 and 152) were investigated using PCR. The most common gene was tet(A) in porcine, but tet(B) in human isolates (>55%). Tet(C/M/D) were rare (1-7%); tet(K/L/O/S/W/Z) were not detected. Co-occurrence of tet(A) and tet(B) was more frequent in human strains (11% vs. 2%). 88% of the porcine isolates had one, and 9% had two tet-genes. By contrast, only 69% of the human strains had one tet-gene, whereas 17% were carriers of two tet-determinants. The most common sulfonamide resistance gene was represented by sulII (40% in porcine, 62% in human isolates), followed by sulI. SulIII was present in eight isolates. Streptomycin resistance was mostly mediated by str(A)/str(B) in porcine, and by str(A)/str(B)/aad(A) in human strains (35% each). In one E. coli of human origin, 7 resistance genes were simultaneously detected. Co-occurrence of 5 or 6 resistance genes was more present in human strains, whereas porcine isolates carried more often only 1-4 genes. The huge diversities between gene patterns of bacteria of human and porcine origin indicate that genetic transfers between microorganisms from different sources are less frequent than transfers within populations of the same source.201019939589
294480.9994Antimicrobial Resistance in Wildlife: Implications for Public Health. The emergence and spread of antimicrobial-resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black-headed gulls (Larus ridibundus), lesser black-back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty-six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug-resistant phenotypes. The phylogenetic group and AMR-encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline-, ampicillin- and streptomycin-resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: bla(TEM), strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug-resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR.201525639901
136990.9994Antimicrobial resistance genes in Escherichia coli isolates recovered from a commercial beef processing plantt. The goal of this study was to assess the distribution of antimicrobial resistance (AMR) genes in Escherichia coli isolates recovered from a commercial beef processing plant. A total of 123 antimicrobial-resistant E. coli isolates were used: 34 from animal hides, 10 from washed carcasses, 27 from conveyers for moving carcasses and meat, 26 from beef trimmings, and 26 from ground meat. The AMR genes for beta-lactamase (bla(CMY), bla(SHV), and bla(TEM), tetracycline (tet(A), tet(B), and tet(C)), sulfonamides (sul1, sul2, and sul3), and aminoglycoside (strA and strB) were detected by PCR assay. The distribution of tet(B), tet(C), sul1, bla(TEM), strA, and strB genes was significantly different among sample sources. E. coli isolates positive for the tet(B) gene and for both strA and strB genes together were significantly associated with hide, washed carcass, and ground meat samples, whereas sull gene was associated with washed carcass and beef trimming samples. The bla(TEM) gene was significantly associated with ground meat samples. About 50% of tetracycline-resistant E. coli isolates were positive for tet(A) (14%), tet(B) (15%), or tet(C) (21%) genes or both tet(B) and tet(C) genes together (3%). The sul2 gene or both sul1 and sul2 genes were found in 23% of sulfisoxazole-resistant E. coli isolates, whereas the sul3 gene was not found in any of the E. coli isolates tested. The majority of streptomycin-resistant E. coli isolates (76%) were positive for the strA and strB genes together. The bla(CMY), bla(TEM), and bla(SHV) genes were found in 12, 56, and 4%, respectively, of ampicillin-resistant E. coli isolates. These data suggest that E. coli isolates harboring AMR genes are widely distributed in meat processing environments and can create a pool of transferable resistance genes for pathogens. The results of this study underscore the need for effective hygienic and sanitation procedures in meat plants to reduce the risks of contamination with antimicrobial-resistant bacteria.200919517739
2914100.9994The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes.200515897222
3558110.9994Identification of a globally distributed clinical streptomycin-resistance plasmid and other resistance determinants in a coastal bay of China. AIMS: To study streptomycin-resistant bacteria isolated from Jiaozhou Bay and their molecular determinants of resistance. METHODS AND RESULTS: Twenty-seven tetracycline-resistant and 49 chloramphenicol-resistant bacterial isolates from surface seawater of Jiaozhou Bay were selected for investigation. More than 88% of these isolates were resistant to streptomycin. Half of the streptomycin-resistant bacteria harboured the strA-strB gene pair, and six isolates carried Tn5393-like transposons by PCR detection. The p9123-related plasmids containing the sul2-strA-strB gene cluster were characterized in two environmental Escherichia coli isolates. Transposon Tn5393 was first identified on a Klebsiella pneumoniae plasmid, which also carried Tn1721, estP and umu genes responsible for antimicrobial and insecticide resistance. CONCLUSIONS: Coresistance to streptomycin and tetracycline or chloramphenicol was found with high frequency. p9123-related plasmid and Tn5393 transposon may contribute to the wide distribution and spread of the strA-strB gene pair in Jiaozhou Bay. The detection of streptomycin-resistance plasmid pQ1-1 from Jiaozhou Bay seawater bacteria and human bacterial pathogens from USA indicates its global dissemination and transmission, across different components of the microbiota on earth. SIGNIFICANCE AND IMPACT OF THE STUDY: Streptomycin resistance can be recognized as an important bioindicator of environmental quality, owing to its association with anthropogenic pollution and the multidrug-resistant microbiota.201121054449
5630120.9994Preliminary Results on the Prevalence of Salmonella spp. in Marine Animals Stranded in Sicilian Coasts: Antibiotic Susceptibility Profile and ARGs Detection in the Isolated Strains. The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (bla(TEM), bla(OXA), tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.202134451393
2022130.9994Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses. Multi-drug-resistant (MDR) bacteria in food animals are a potential problem in both animal and human health. In this study, MDR commensal Escherichia coli isolates from poultry were examined. Thirty-two E. coli isolates from broiler carcass rinses were selected based on their resistance to aminoglycosides, β-lactams, chloramphenicols, tetracyclines, and sulfonamide antimicrobials. Microarray analysis for the presence of antimicrobial resistance and plasmid genes identified aminoglycoside [aac(6), aac(3), aadA, aph, strA, and strB], β-lactam (bla(AmpC), bla(TEM), bla(CMY), and bla(PSE-1)), chloramphenicol (cat, flo, and cmlA), sulfamethoxazole (sulI and sulII), tetracycline [tet(A), tet(C), tet(D), and tetR], and trimethoprim (dfrA) resistance genes. IncA/C plasmid core genes were detected in 27 isolates, while IncHI1 plasmid genes were detected in one isolate, indicating the likely presence of these plasmids. PCR assays for 18 plasmid replicon types often associated with MDR in Enterobacteriaceae also detected one or more replicon types in all 32 isolates. Class I integrons were investigated by PCR amplification of the integrase I gene, intI1, and the cassette region flanked by conserved sequences. Twenty-five isolates were positive for the intI1 gene, and class I integrons ranging in size from ~1,000 to 3,300 bp were identified in 19 of them. The presence of class I integrons, IncA/C plasmid genes, and MDR-associated plasmid replicons in the isolates indicates the importance of these genetic elements in the accumulation and potential spread of antimicrobial resistance genes in the microbial community associated with poultry.201222385320
2961140.9994Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.202032326051
2920150.9994The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. OBJECTIVES: To determine the genetic basis for tetracycline and sulphonamide resistance and the prevalence of class I and II integrons in oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. METHODS: A total of 222 isolates were screened for tetracycline resistance genes [tet(A), tet(B), tet(H), tet(M) and tet(39)] and class II integrons by PCR. One hundred and thirty-four of these isolates were also sulphonamide resistant and these isolates were screened for sulphonamide resistance genes (sulII and sulIII) as well as class I integrons. Plasmid extraction and Southern blots with sulII and tet(39) probes were performed on selected isolates. RESULTS: The recently identified tetracycline resistance gene tet(39) was demonstrated in 75% (166/222) of oxytetracycline-resistant Acinetobacter spp. from integrated fish farms in Thailand. Isolates that were also sulfamethoxazole-resistant contained sulII (96%; 129/134) and/or sulI (14%; 19/134) (as part of class I integrons). sulII and tet(39) were located on plasmids differing in size in the isolates tested. CONCLUSIONS: The study shows tet(39) and sulII to be common resistance genes among clonally distinct Acinetobacter spp. from integrated fish farms and these bacteria may constitute reservoirs of resistance genes that may increase owing to a selective pressure caused by the use of antimicrobials in the overlaying animal production.200717095527
2033160.9994Occurrence and Antimicrobial Resistance Traits of Escherichia coli from Wild Birds and Rodents in Singapore. Antimicrobial resistance (AMR) in Escherichia coli (E. coli) poses a public health concern worldwide. Wild birds and rodents, due to their mobility, are potential vehicles for transmission of AMR bacteria to humans. Ninety-six wild birds' faecal samples and 135 rodents' droppings samples were collected and analysed in 2017. Forty-six E. coli isolates from wild birds and rodents were subjected to AMR phenotypic and genotypic characterisation. The proportion of E. coli isolates resistant to at least one of the antimicrobials tested from wild birds (80.8%) was significantly higher than that of isolates from rodents (40.0%). The proportion of E. coli isolates resistant to each antimicrobial class for wild birds was 3.8% to 73.1% and that for rodents was 5.0% to 35.0%. Six out of 26 E. coli isolates from wild birds (23.1%) and two out of 20 (10.0%) isolates from rodents were multi-drug resistant (MDR) strains. These MDR E. coli isolates were detected with various antimicrobial resistance genes such as bla(TEM-1B) and qnrS1 and could be considered as part of the environmental resistome. Findings in this study suggested that wild birds and rodents could play a role in disseminating antimicrobial resistant E. coli, and this underscores the necessity of environment management and close monitoring on AMR bacteria in wild birds and rodents to prevent spreading of resistant organisms to other wildlife animals and humans.202032756497
2911170.9994Trimethoprim resistance in commensal bacteria isolated from farm animals. Trimethoprim resistance was examined in faecal bacteria obtained from chickens, sheep, cattle and pigs. The incidence of trimethoprim resistance in porcine strains was 17% (157/922) and, whereas 15.8% (146/922) of these bacteria were highly resistant, only 4% (37/922) of the isolates possessed trimethoprim resistance plasmids. Highly resistant porcine strains were obtained from 44% of the pig farms (41/93) but transferable trimethoprim resistance was found in isolates from 11% (10/93) of the farms. There was an association between the carriage of trimethoprim resistance plasmids and certain farms. Most of the resistance plasmids were not identical with those found in human clinical bacteria but one porcine plasmid was the same as the most ubiquitous trimethoprim resistance plasmid in Edinburgh.19873556440
2960180.9993Antibiotic resistance, virulence genes, and phylogenetic groups of bacteria isolated from wild passerine birds in Iran. Wild passerine birds may serve as environmental reservoirs and as vectors for the long-distance dispersal of microorganisms and resistance determinants. However, there is no much knowledge on pathogenic bacteria in wild birds in Iran. The present study aimed to analyze antibiotic resistance in wild passerine birds collected from the northeast region of Iran as the rich breeding bird fauna with a special focus on Escherichia coli virulence, integron, and phylogenetic groups. A total of 326 isolates were collected and identified from the cloaca of wild birds using a swab. The results showed a high percentage of resistance to tetracycline (45.8%) and ampicillin (26.7%). The resistance genes, tet(A), tet(B), tet(M), and tet(L) were detected in tetracycline-resistant isolates, while the blaTEM gene was the most prevalent in ampicillin-resistant isolates (38.6%). Out of the 129 E. coli isolates examined, 99 isolates were found to have virulence gene, with the highest prevalence of the fimbriae (fimH) gene (22.4%). Additionally, the E. coli strains were most often classified into phylogenetic groups B1 (48.8%) followed by B2 (19.3%). Also, the highest average frequency of class 1 integron was detected among our isolates. Results indicated that wild birds are reservoirs of multidrug resistance and virulence genes that may have the potential to be transferred to other organisms, including humans.202439298116
2922190.9993Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920