High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
262201.0000High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance.201424655888
262310.9998High Carriage of Extended-Spectrum, Beta Lactamase-Producing, and Colistin-Resistant Enterobacteriaceae in Tibetan Outpatients with Diarrhea. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) have been detected in human-impacted habitats, especially in densely populated cities. The Qinghai-Tibet Plateau is located far from the heavily populated regions of China, and Tibetan residents have distinct dietary habits and gut microbes. Antibiotic-resistance monitoring in the Tibetan population is rare. Here, we collected stool samples from Tibetan outpatients with diarrhea. From 59 samples, 48 antibiotic-resistant Enterobacteriaceae isolates were obtained, including 19 extended-spectrum beta lactamase (ESBL)-producing isolates from 16 patients and 29 polymyxin-resistant isolates from 22 patients. Either ESBL or mcr genes were found in 17 Escherichia coli isolates, approximately 58.8% of which were multidrug-resistant, and ten incompatible plasmid types were found. The gene bla(CTX-M) was a common genotype in the ESBL-producing E. coli isolates. Four E. coli isolates contained mcr-1. The same mcr-1-carrying plasmid was found in distinct E. coli isolates obtained from the same sample, thus confirming horizontal transmission of mcr-1 between bacteria. Genomic clustering of E. coli isolates obtained from Lhasa, with strains from other regions providing evidence of clone spreading. Our results reveal a strong presence of ARB and ARGs in Tibetan outpatients with diarrhea, implying that ARB and ARGs should be monitored in the Tibetan population.202235453259
262420.9998Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. The dissemination of drug-resistant bacteria from animal farms to aquatic environments can pose a potential threat to public health. In this study, antimicrobial resistance, resistance genes, and genetic similarity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli of different origins (chicken feces and upstream and downstream river waters) were analyzed to track the spread of drug-resistant bacteria of animals. The results showed that a total of 29 ESBL-producing E. coli were obtained from 258 samples, and isolation rates of the ESBL-producing E. coli from chicken feces and upstream and downstream waters were 10.7% (16/150), 3.7% (1/27), and 14.8% (12/81), respectively. The ESBL-producing E. coli from upstream water was resistant to 7 antibiotics, but isolates from feces and downstream water had a higher resistance rate. In 29 ESBL-producing E. coli, the most common gene was CTX-M and the SHV gene was not detected. Five ESBL-producing isolates from downstream water showed >90% similarity with the fecal isolates, while the only one isolate from upstream water had <70% similarity with fecal isolates. The results suggest that animal farms' effluent, especially the untreated wastewater, could contribute to the spread of resistance genes.201425277838
195130.9998Colistin-resistant Escherichia coli with mcr genes in the livestock of rural small-scale farms in Ecuador. OBJECTIVE: Emergence and dissemination of colistin-resistant (Co-R) bacteria harboring mobile colistin resistance genes pose a threat for treatment of infections caused by multi-drug resistant bacteria. Although the worldwide spread of Co-R bacteria is known, the precise state of Co-R bacterial dissemination in livestock of Andean countries remains unclear. Therefore, we investigated mcr-containing Co-R Escherichia coli dissemination in livestock on small-scale farms in two socioecologically different regions of Ecuador: the Amazonian rain-forest and the Pacific Coast. RESULTS: Sixty-six rectal swab samples from 34 pigs and 32 chickens, from five farms in the two regions, were assessed for the dissemination of Co-R E. coli using the selective medium CHROMagar™ COL-APSE. mcr-containing Co-R E. coli were detected in the specimens at a high rate (47%; 31/66), but the detection rates of the two regions were not statistically different. Both chickens and pigs showed similar detection rates. All Co-R E. coli isolates harbored mcr-1. The minimum inhibitory concentrations of colistin were ≥ 8 mg/L, and 67.7% (21/31) of the Co-R isolates were multi-drug resistant. Pulsed-field gel electrophoresis revealed the limited relation between isolates. Thus, we revealed the high rate of widespread dissemination of Co-R bacteria in livestock regardless of the socioecological conditions in Ecuador.201930832731
261140.9998Prevalence of antimicrobial-resistant bacteria in conventional vs. organic livestock farms in Egypt: a cross-sectional comparative study. The silent pandemic of antimicrobial resistance (AR) has been on the rise for the past decades. It is essential to determine the burden of AR in animal farms that spreads leading to human exposure. A total of 100 samples including soil, litter, animal excreta, and wastewater were collected from seven conventional and one organic farm in Egypt. The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-producing E. coli), fluoroquinolone-resistant E. coli, fluoroquinolone-resistant Salmonella, and vancomycin-resistant enterococci (VRE) was determined in studied farms. Conventional farms had a higher prevalence of antimicrobial-resistant bacteria than the organic farm (73.81% vs. 18.75%, P < .001). In conventional farms 21.43% of samples yielded mixed isolates; however, in the organic farm, only single isolates of ESBL-producing E. coli were detected. The most prevalent ESBL-production gene was blaTEM (82.14%), followed by blaCTX-M (48.22%), and blaSHV (19.64%), either alone or in combination with another gene. The most prevalent fluoroquinolone-resistance genes were qnrS (82.69%) and qnrB (42.30%), either alone or in combination with another gene(s). A total of five VRE isolates harbored vanA gene (83.33%), none carried vanB gene, and one isolate was negative for both genes. The studied conventional livestock farms had significantly higher rates of serious AR threats than the organic farm.202336688777
194850.9998Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.201627642751
274660.9998Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam. The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla(TEM) gene being more common than bla(CTX-M). Co-harbouring of the bla(CTX-M), bla(TEM) and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.201728661465
262770.9998High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.202133633708
261280.9998Prevalence of Extended-Spectrum β-Lactamase-Producing Bacteria on Fresh Vegetables in Japan. Extended-spectrum β-lactamase (ESBL)-producing bacteria are spreading rapidly, posing a threat to human and animal health. Contamination of vegetables with antimicrobial-resistant bacteria or those harboring antimicrobial resistance genes or a combination of both presents a potential route of transmission to humans. Therefore, the aim of this study was to determine the prevalence of these bacteria in fresh vegetables in Japan. A total of 130 samples of fresh vegetables were collected from seven supermarkets in Japan. The predominant genus detected was Pseudomonas spp., including 10 ESBL-producing strains, isolated from 10 (7.7%) of the vegetable samples. Two ESBL genes were detected, bla(TEM-116) (n = 7) and bla(SHV-12) (n = 3), and some of these strains were resistant to multiple antibiotics. Because vegetables are often consumed raw, those contaminated with ESBL producers could represent an important route of transmission to humans in Japan. Thus, more stringent hygiene measures and monitoring are required to prevent transmission via this source.201931532252
183190.9998Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for bla(CTX-M-15), bla(NDM), bla(KPC) and bla(OXA-48)-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates' rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers' rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes.202235927336
1830100.9998Shifts in bla genes and Class 1 integron prevalence in beta-lactamase-producing bacteria before and after the COVID-19 pandemic in Mendoza, Argentina. This study analyzes the molecular epidemiology of bla genes and Class 1 integron in broad-spectrum beta-lactamase (BSBL) and extended-spectrum beta-lactamase (ESBL) producing strains of bacteria isolated from clinical samples of hospitalized and ambulatory patients before and after the COVID-19 pandemic. Isolates obtained in two periods were compared: the first corresponding to the years November 2019-March 2020, and the second to the years November 2021-April 2022. We evaluate changes in resistance patterns of antibiotics associated with pressures on the healthcare system and social lockdowns. A total of 156 isolates were analyzed: 78 from the first period (61 hospitalized, 17 ambulatory) and 78 from the second period (47 hospitalized, 31 ambulatory). Escherichia coli and Klebsiella pneumoniae were the predominant bacterial species, representing 85% of the isolates in both periods. The frequency of ambulatory ESBL-producing isolates increased significantly, from 22% (17/78) to 40% (31/78; P < 0.01) in the second period. The prevalence of bla(SHV) increased from 24% (19/78) to 72% (56/78; P < 0.01) in the second period, while the bla(CTX-M-2) group, absent in the first period, was detected in 43% (34/78) of isolates from the second period. Strains from the second period exhibited greater genetic complexity, with an increased prevalence of combinations involving three or more bla genes, including isolates carrying up to five of such genes. Class 1 integron showed a strong correlation with resistance to ciprofloxacin and trimethoprim-sulfamethoxazole. The gene bla(OXA-1), previously associated with resistance to beta-lactamase inhibitors, did not show a clear pattern in the second period.IMPORTANCEAntimicrobial resistance associated with the production of extended-spectrum beta-lactamase (ESBL) represents a critical global health challenge, particularly due to the limited development of new antibiotics. This is the first report from Argentina's central-west region examining the prevalence of beta-lactamase-encoding genes, providing a framework for future research. Our findings reveal a significant increase in bacteria with the ESBL phenotype, particularly among ambulatory populations post-pandemic, suggesting a concerning spread of multidrug-resistant bacteria outside hospital environments. This could compromise empirical antibiotic treatments for ambulatory patients, increasing the risk of severe complications. Our results highlight the urgent need for ongoing surveillance to detect virulent strains before clonal spread or horizontal gene transfer occurs in the community. They also emphasize the importance of strategies to ensure the prudent use of antimicrobials and mitigate the increasing prevalence of resistance genes, which threatens the effectiveness of current therapeutic options.202540662585
1620110.9998A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. The emergence and spread of antimicrobial-resistant bacteria and resistance genes pose serious human and animal health concerns. Therefore, to control antimicrobial-resistant bacteria in the environment, the status of antimicrobial resistance of Escherichia coli in a variety of wild mammals and their prevalence were examined using antimicrobial-containing media. In total, 750 isolates were obtained from 274/366 (74.9%) wild mammals, and antimicrobial-resistant E. coli was detected in 37/750 isolates (4.9%) from 7 animal species (26/366 [7.1%] individuals). Using antimicrobial-containing media, 14 cefotaxime (CTX)- and 35 nalidixic acid-resistant isolates were obtained from 5 (1.4%) and 17 (4.6%) individuals, respectively. CTX-resistant isolates carried bla(CTX-M-27), bla(CTX-M-55), bla(CTX-M-1), and bla(CMY-2), with multiple resistance genes. Fluoroquinolone-resistant isolates had multiple mutations in the quinolone-resistance determining regions of gyrA and parC or qnrB19. Most resistant isolates exhibited resistance to multiple antimicrobials. The prevalence of antimicrobial-resistant bacteria observed in wild mammals was low; however, it is essential to elucidate the causative factors related to the low prevalence and transmission route of antimicrobial-resistant bacteria/resistance genes released from human activities to wild animals and prevent an increase in their frequency.202236310042
2613120.9998Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum β-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination.202134065908
878130.9998Environmental Spread of New Delhi Metallo-β-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla(NDM-1) gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla(NDM-1)-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla(CTX-M-1) (80%), bla(CTX-M-15) (63%), bla(TEM) (76%), bla(SHV) (33%), bla(CMY-2) (16%), bla(OXA-48-like) (2%), bla(OXA-1) (53%), and bla(OXA-47-like) (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla(NDM-1) were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community.IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla(NDM-1) gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.201728526792
1619140.9998Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked.201931827778
1949150.9998Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were bla(TEM) (76.09%), bla(CTX-M1) (71.74%), and bla(NDM) (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings.202337623228
1709160.9998High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health.201627392282
2625170.9998Spread of extended-spectrum beta-lactamase-producing Escherichia coli from a swine farm to the receiving river. The dissemination of drug-resistant bacteria into different environments has posed a grave threat to public health, but data on the spread of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) from animal farms to the receiving river are limited. Here, 57 ESBL-producing E. coli isolated from a pig farm and the receiving river were analyzed in terms of drug resistance, ESBL genes, and enterobacterial repetitive intergenic consensus (ERIC). The results showed that ESBL-producing E. coli from swine feces and downstream water of the pig farm outfall overlapped substantially in drug resistance and ESBL genes. Additionally, six ESBL-producing E. coli from the downstream water exhibited 100 % genetic similarity with strains from the swine feces. In conclusion, effluents of animal farms are a likely contributor to the presence of ESBL-producing E. coli in aquatic environments.201525921760
2753180.9998Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Wastewaters serve as important hot spots for antimicrobial resistance and monitoring can be used to analyse the abundance and diversity of antimicrobial resistance genes at the level of large bacterial and human populations. In this study, whole genome sequencing of beta-lactamase-producing Escherichia coli and metagenomic analysis of whole-community DNA were used to characterize the occurrence of antimicrobial resistance in hospital, municipal and river waters in the city of Brno (Czech Republic). Cefotaxime-resistant E. coli were mainly extended-spectrum beta-lactamase (ESBL) producers (95.6%, n = 158), of which the majority carried bla(CTX-M) (98.7%; n = 151) and were detected in all water samples except the outflow from hospital wastewater treatment plant. A wide phylogenetic diversity was observed among the sequenced E. coli (n = 78) based on the detection of 40 sequence types and single nucleotide polymorphisms (average number 34,666 ± 15,710) between strains. The metagenomic analysis revealed a high occurrence of bacterial genera with potentially pathogenic members, including Pseudomonas, Escherichia, Klebsiella, Aeromonas, Enterobacter and Arcobacter (relative abundance >50%) in untreated hospital and municipal wastewaters and predominance of environmental bacteria in treated and river waters. Genes encoding resistance to aminoglycosides, beta-lactams, quinolones and macrolides were frequently detected, however bla(CTX-M) was not found in this dataset which may be affected by insufficient sequencing depth of the samples. The study pointed out municipal treated wastewater as a possible source of multi-drug resistant E. coli and antimicrobial resistance genes for surface waters. Moreover, the combination of two different approaches provided a more holistic view on antimicrobial resistance in water environments. The culture-based approach facilitated insight into the dynamics of ESBL-producing E. coli and the metagenomics shows abundance and diversity of bacteria and antimicrobial resistance genes vary across water sites.202133232750
1611190.9998Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones. The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans.201526225428