Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
261901.0000Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of bla(CTX-M) (51/55, 92.7%) and bla(SHV) (8/55, 14.5%) ESBLs, and bla(GES) (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may contribute to the emergence and spreading of resistance in the environment, making this a natural reservoir.201727816836
262410.9999Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. The dissemination of drug-resistant bacteria from animal farms to aquatic environments can pose a potential threat to public health. In this study, antimicrobial resistance, resistance genes, and genetic similarity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli of different origins (chicken feces and upstream and downstream river waters) were analyzed to track the spread of drug-resistant bacteria of animals. The results showed that a total of 29 ESBL-producing E. coli were obtained from 258 samples, and isolation rates of the ESBL-producing E. coli from chicken feces and upstream and downstream waters were 10.7% (16/150), 3.7% (1/27), and 14.8% (12/81), respectively. The ESBL-producing E. coli from upstream water was resistant to 7 antibiotics, but isolates from feces and downstream water had a higher resistance rate. In 29 ESBL-producing E. coli, the most common gene was CTX-M and the SHV gene was not detected. Five ESBL-producing isolates from downstream water showed >90% similarity with the fecal isolates, while the only one isolate from upstream water had <70% similarity with fecal isolates. The results suggest that animal farms' effluent, especially the untreated wastewater, could contribute to the spread of resistance genes.201425277838
277220.9998Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle. Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as bla(TEM-1), bla(SHV-1), bla(PER-1), bla(AmpC), bla(VIM-1), PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The bla(AmpC) gene was found in P. aeruginosa, while bla(TEM-1) and bla(PER-1) genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates.202133625570
103630.9998Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. AIMS: This study was performed to detect the presence of Escherichia coli resistant to cephalosporins, carbapenems and quinolones in hospital wastewater. METHODS AND RESULTS: Wastewaters from a rural (H1) and an urban (H2) hospital were tested for E. coli resistant to cephalosporins, carbapenem and quinolones. Genes coding for chromosomal and plasmid-mediated resistance and phylogenetic grouping was detected by multiplex polymerase chain reaction (PCR) and for genetic relatedness by rep-PCR. Of 190 (H1 = 94; H2 = 96) E. coli examined, 44% were resistant to both cephalosporins and quinolones and 3% to imipenem. ESBLs were detected phenotypically in 96% of the isolates, the gene blaCTX-M coding for 87% and blaTEM for 63%. Quinolone resistance was due to mutations in gyrA and parC genes in 97% and plasmid-coded aac-(6')-Ib-cr in 89% of isolates. Only in one carbapenem-resistant E. coli, NDM-1 was detected. Nearly 67% of the isolates belonged to phylogenetic group B2. There was no genetic relatedness among the isolates. CONCLUSIONS: Hospital wastewater contains genetically diverse multidrug-resistant E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study stresses the need for efficient water treatment plants in healthcare settings as a public health measure to minimize spread of multidrug-resistant bacteria into the environment.201424975198
262140.9998Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Untreated wastewater is a risk factor for the spread of antibiotic resistance in the environment. However, little is known about the contribution of untreated wastewater to the burden of antibiotic resistance in the Nigerian environment. In this study, a total of 143 ceftazidime-/cefpodoxime-resistant bacteria isolated from untreated wastewater and untreated wastewater-contaminated surface and groundwater in Nigeria were screened for extended-spectrum β-lactamase (ESBL) genes, integrons and integron gene cassettes by PCR. The genetic environment of bla (CTX-M-15) was mapped by PCR and potentially conjugative plasmids were detected among the isolates by degenerate primer MOB typing (DPMT). ESBL production was confirmed in 114 (79.7%) isolates and ESBL genes (bla (SHV), bla (CTX-M-15) and bla (TEM)) were detected in 85 (74.6%) ESBL-producing isolates. bla (CTX-M-15) was associated with ISEcp1 and with orf477 in 12 isolates and with ISEcp1, IS26 and orf477 in six others. To the best of our knowledge, this is the first report of bla (CTX-M-15) in hand-dug wells and borehole serving as sources of drinking water and a first report of the genetic environment of bla (CTX-M-15) in environmental bacteria from Nigeria. The results of this study confirm untreated wastewater as an important medium for the spread of ESBL-producing bacteria within the Nigerian environment. Hence, the widespread practice of discharging untreated wastewater into the aquatic ecosystem in Nigeria is a serious risk to public health.201829139076
262050.9998GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. In this study, we investigated the β-lactamase-encoding genes responsible for β-lactam resistance phenotypes detected among 56 Gram-negative isolates (Gamma- and Alpha-proteobacteria) recovered from wastewater, urban streams, and drinking water. The β-lactam resistance mechanisms detected in 36 isolates comprised the presence of class A (bla(TEM)(-1) , bla(SHV)(-1) , bla(SHV)(-11) , bla(GES)(-5) ), class B (ImiS, L1), class C (bla(CMY)(-2) , bla(CMY)(-34) , bla(CMY)(-65) , bla(CMY)(-89) , bla(CMY)(-90) , bla(ACC)(-5) , bla(ACT)(-13) ), and class D (blaOXA-309)β-lactamase-encoding genes, some variants described for the first time here. Notably, the results showed antimicrobial resistance genes related not only to commonly used antibiotics, but also to carbapenems, providing the first description of a GES-5-producing Enterobacteriaceae. The importance of ubiquitous bacteria thriving in aquatic environments as reservoirs or carriers of clinically relevant resistance determinants was confirmed, and the need to monitor water habitats as potential sources for the emergence and/or spread of antibiotic resistance in the environment was highlighted.201424267783
276060.9998Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. Wastewaters serve as significant reservoirs of antibiotic resistant bacteria. Despite the evidence of antimicrobial resistance in wastewaters and river water in Kathmandu, direct linkage between them is not discussed yet. This study investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing bacteria and associated resistance genes in wastewaters and river water. Out of 246 bacteria from wastewaters, 57.72% were ESBL producers and 77.64% of them were multidrug resistant (MDR). ESBL producing E. coli was dominant in municipal and hospital wastewaters (HWW) as well as in river water while K. pneumoniae was common in pharmaceutical wastewater. The bla(SHV) and bla(TEM) genes were prevalent and commonly co-occurred with aac(6')-Ib-cr in K. pneumoniae isolated pharmaceutical wastewater. bla(CTX-M) carrying E. coli from hospital co-harbored aac(6')-Ib-cr while that from municipal influent and river water co-harbored qnrS. Whole genome sequencing data revealed the presence of diverse ARGs in bacterial isolates against multiple antibiotics. In average, an E. coli and a K. pneumoniae isolate contained 55.75 ± 0.96 and 40.2 ± 5.36 ARGs, respectively. Multi-locus sequence typing showed the presence of globally high-risk clones with wider host range such as E. coli ST10, and K. pneumoniae ST15 and ST307 in HWW and river indicating frequent dissemination of antimicrobial resistance in wastewater of Kathmandu. Whole genome sequence data aligned with phenotypic antibiograms and resistance genes detected by PCR in selected isolates. The presence of significant plasmid replicons (IncF, IncY) and mobile genetic elements (IS903, IS26) indicate high frequency of spreading antibiotic resistance. These findings indicate burden and dissemination of antimicrobial resistance in the environment and highlight the need for effective strategies to mitigate the antibiotic resistance.202438795483
276570.9998Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 10(3) to 1.7 × 10(4) CFU per 100 mL were detected on the nutrient-poor medium spiked with 3(rd) generation cephalosporins and carbapenems. These numbers were 3 log(10) higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (bla(TEM), bla(CMY-2), bla(OXA-48), bla(VIM-2), bla(SHV), and bla(NDM-1)) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log(10) gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.202438486766
102680.9998Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing E. coli Strains in uMgungundlovu District, South Africa. Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they can provide valuable information on ARB circulating in a community. This study characterised extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated using the membrane filtration method and confirmed using the API 20E test and real-time polymerase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The highest E. coli count ranged between 1.1 × 10(5) (influent) and 4.3 × 10(3) CFU/mL (effluent). Eighty pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP. ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR). Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the isolates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also, a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest the potential circulation of different ESBL-producing strains within the studied district, requiring a more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within impoverished communities.202134356780
102590.9998Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria. Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.201627563674
2769100.9998Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Wastewater discharged from clinical isolation and general wards at two hospitals in Singapore was examined to determine the emerging trends of antibiotic resistance (AR). We quantified the concentrations of 12 antibiotic compounds by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibiotic-resistant bacteria (ARB), the class 1 integrase gene (intI1), and 16 antibiotic resistance genes (ARGs) that confer resistance to 10 different clinically relevant antibiotics. A subset of 119 antibiotic-resistant isolates were phylogenetically classified and tested for the presence of ARGs encoding resistance to β-lactam antibiotics (bla(NDM), bla(KPC), bla(SHV), bla(CTX-M)), amikacin [aac(6')-Ib], co-trimoxazole (sul1, sul2, dfrA), ciprofloxacin (qnrA, qnrB), and the intI1 gene. Among these resistant isolates, 80.7% were detected with intI1 and 66.4% were found to carry at least 1 of the tested ARGs. Among 3 sampled locations, the clinical isolation ward had the highest concentrations of ARB and the highest levels of ARGs linked to resistance to β-lactam (bla(KPC)), co-trimoxazole (sul1, sul2, dfrA), amikacin [aac(6')-Ib], ciprofloxacin (qnrA), and intI1 We found strong positive correlations (P < 0.05) between concentrations of bacteria resistant to meropenem, ceftazidime, amikacin, co-trimoxazole, and ciprofloxacin and abundances of bla(KPC), aac(6')-Ib, sul1, sul2, dfrA, qnrA, and intI1 genes.201627736769
1177110.9998High carriage of plasmid-mediated quinolone resistance (PMQR) genes by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. There is a rapid rise in the incidence of quinolone resistant bacteria in Nigeria. Most studies in Nigeria have focused on isolates from the clinical settings, with few focusing on isolates of environmental origin. This study aimed to investigate the antibiogram and carriage of plasmid-mediated quinolone resistance (PMQR) genes by quinolone-resistant isolates obtained from a pool of cefotaxime-resistant Escherichia coli (E. coli) recovered from sewage leaking out of some surface-leaking sanitary sewers in a University community in Nigeria. Isolation of E. coli from the sewage samples was done on CHROMagar E. coli, after enrichment of the samples was done in Brain Heart Infusion broth amended with 6 µg/mL of cefotaxime. Identification of presumptive E. coli was done using molecular methods (detection of uidA gene), while susceptibility to antibiotics was carried out using the disc diffusion method. Detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was carried out using primer-specific PCR. A total of 32 non-repetitive cefotaxime-resistant E. coli were obtained from the sewage, with 21 being quinolone-resistant. The quinolone-resistant isolates showed varying level of resistance to the tested antibiotics, with imipenem being the only exception with 0% resistance. The PMQR genes: aac(6')-lb-cr, qnrA, qnrB, qnrS and qepA and oqxAB were detected in 90.5%, 61.9%, 47.6%, 38.1%, 4.8% and 0% respectively of the isolates. The findings of this study showed a high level of resistance to antibiotics and carriage of PMQR genes by quinolone-resistant E. coli obtained from the leaking sanitary sewers, suggesting a potential environmental and public health concern.202235000007
2775120.9998Co-occurrence of multidrug resistance, β-lactamase and plasmid mediated AmpC genes in bacteria isolated from river Ganga, northern India. Wastewater effluents released in surface water provides suitable nutrient rich environment for the growth and proliferation of antibiotic resistant bacteria (ARB) and genes (ARG). Consequently, bacterial resistance has highly evolved over the recent years and diversified that each antibiotic class is inhibited by a distinct mechanism. In the present study, the prevalence of Multidrug resistant (MDR), extended spectrum β-lactamases (ESBL) and plasmid mediated Amp-C producing strains was analyzed in 28 surface water samples collected near domestic effluent discharge sites in river Ganga located across 11 different geographical indices of Uttar Pradesh, India. A total of 243 bacterial strains with different phenotypes were isolated. Among 243 isolates, 206 (84.77%) exhibited MDR trait displaying maximum resistance towards β-lactams (P = 78.19%; AMX = 72.84%), glycopeptides (VAN = 32.92%; TEI = 79.42%), cephalosporins (CF = 67.90%; CFX = 38.27%), and lincosamides (CD = 78.18%) followed by sulfonamide, macrolide and tetracycline. ESBL production was confirmed in 126 (51.85%) isolates that harbored the genes: blaTEM (95.24%), blaSHV (22.22%), blaOXA (11.90%) and blaCTX-M group (14.28%). The presence of plasmid mediated AmpC was detected only in 6.17% of isolates. The existence of such pathogenic strains in the open environment generates an urgent need for incorporating stringent measures to reduce the antibiotic consumption and hence its release.202032892014
1002130.9998Genetic diversity and prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in aquatic environments receiving untreated hospital effluents. The spread of extended-spectrum beta-lactamase (ESBL)-producing bacteria in the environment has been recognized as a challenge to public health. The aim of the present study was to assess the occurrence of ESBL-producing Escherichia coli and Klebsiella pneumoniae from selected water bodies receiving hospital effluents in Kerala, India. Nearly 69.8% of Enterobacteriaceae isolates were multi-drug resistant by the Kirby-Bauer disc diffusion method. The double disc synergy test was used to detect the ESBL production and the genes responsible for imparting resistance were detected by PCR. Conjugation experiments confirmed the mechanism of plasmid-mediated transfer of resistance. The prevalence of ESBL production in E. coli and K. pneumoniae was 49.2 and 46.8%, respectively. Among the ESBL-encoding genes, bla(CTX-M) was the most prevalent group followed by bla(TEM), bla(OXA), bla(CMY,) and bla(SHV). The results suggest that healthcare settings are one of the key contributors to the spread of ESBL-producing bacteria, not only through cross-transmission and ingestion of antibiotics but also through the discharge of waste without a proper treatment, leading to harmful effects on the aquatic environment. The high prevalence of ESBL-producing Enterobacteriaceae with resistance genes in public water bodies even post-treatment poses a serious threat.202336705498
1032140.9998Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern.202032802720
2764150.9998Solid waste dumpsite leachate and contiguous surface water contain multidrug-resistant ESBL-producing Escherichia coli carrying Extended Spectrum β-Lactamase (ESBL) genes. Dumpsites generate leachates containing bacteria that may carry antibiotic resistance genes, such as extended spectrum β-lactamase (ESBL). However, the contribution of dumpsite leachates in the environmental spread of ESBL genes has not been investigated in greater detail. This study aimed to quantify the impact of Ajakanga dumpsite leachate on the spread of ESBL genes through surface water. The susceptibility of Escherichia coli isolated from dumpsite leachate and the accompanying surface water to selected antibiotics was assessed by the standardized disc diffusion method. The isolates were evaluated for phenotypic ESBL production using the double disc synergy test (DDST). The detection of ESBL genes in the isolates was carried out using a primer-specific polymerase chain reaction (PCR). Escherichia coli isolates from leachate (n = 26/32) and surface water (n = 9/12) expressed ESBL phenotype. The ESBL-producing isolates showed the highest level of resistance to the 3rd generation cephalosporin antibiotics: cefotaxime (100%), cefpodoxime (97%), ceftazidime (97%), with low resistance observed to imipenem (6%) and azithromycin (3%). All the isolates were multidrug-resistant, showing resistance to three or more classes of antibiotics. All the ESBL-producing E. coli obtained carried bla(CTX-M), 21/35 (60%) carried bla(TEM) while none of the isolates bore bla(SHV). This study found that ESBL-producing Escherichia coli from dumpsite leachate and nearby surface water had identical resistance signatures indicating the relatedness of the isolates, and that dumpsite leachate could contribute to the transfer of ESBL-producing bacteria and their genes to receiving surface water. This study has necessitated the need for a review of the guidelines and operational procedures of dumpsites to forestall a potential public health challenge.202439164664
1039160.9998Genetic Investigation of Beta-Lactam Associated Antibiotic Resistance Among Escherichia Coli Strains Isolated from Water Sources. BACKGROUND: Antimicrobial resistance is an important factor threatening human health. It is widely accepted that antibiotic resistant bacteria such as Escherichia coli (E. coli) released from humans and animals into the water sources, can introduce their resistance genes into the natural bacterial community. OBJECTIVE: The aim of this study was to investigate the prevalence of bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) associated-antibiotic resistance among E. coli bacteria isolated from different water resources in Iran. METHODS: The study contained all E. coli strains segregated from different surface water sources. The Kirby-Bauer method and combined discs method was determined in this study for testing antimicrobial susceptibility and strains that produced Extended-Spectrum Beta Lactamases (ESBL), respectively. DNA extraction kit was applied for genomic and plasmid DNA derivation. Finally the frequency of resistant genes including bla(TEM), bla(CTX), bla(SHV), bla(OXA) and bla(VEB) in ESBL producing isolates were studied by PCR. RESULTS: One hundred E. coli strains were isolated and entered in the study. The highest antibiotic resistance was observed on clindamycin (96%). Moreover, 38.5% isolates were ESBL producers. The frequency of different ESBLs genes were 37%, 27%, 27%, and 25% for bla(TEM), bla(CTX), bla(SHV), and bla(OXA) , respectively. The bla(VEB) wasn't found in any isolates. CONCLUSION: The study revealed a high prevalence of CTX-M, TEM, SHV and OXA genes among E. coli strains in surface water resources. In conclusion, these results raised a concern regarding the presence and distribution of these threatening factors in surface water sources and its subsequent outcomes.201729151997
2613170.9998Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum β-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination.202134065908
1035180.9998Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. This study aimed to investigate the occurrence of biofilm-forming extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and to evaluate their antibiotic resistance behaviour and transferability of the plasmid-encoded blaCTX-M gene in biofilm. ESBL production was confirmed using the combined disc test and Etest. Amplification of blaCTX-M was performed by PCR. Antibiotic susceptibility was evaluated using the disc diffusion assay and broth dilution method. Transfer of blaCTX-M in planktonic and biofilm state was performed by broth mating and filter mating experiments, respectively. Among 110 enteric bacteria, 24 (21.8%) isolates belonging to Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae were found to produce ESBL and formed varying levels of biofilm in vitro. Presence of blaCTX-M was detected in 18 (75%) ESBL-producing isolates. A many fold increase in resistance to antibiotics was observed in biofilm. Among ESBL-producers, seven isolates could transfer the blaCTX-M gene by conjugation, with transfer frequencies ranging from 2.22×10(-4) to 7.14×10(-2) transconjugants/recipient cell in the planktonic state and from 3.04×10(-3) to 9.15×10(-1) in biofilm. The transfer frequency of blaCTX-M was significantly higher in biofilm compared with the planktonic state, and co-transfer of ciprofloxacin resistance was also detected in five isolates. This study demonstrates that biofilm-forming ESBL-producing enteric bacteria with a greater transfer frequency of resistance genes will lead to frequent dissemination of β-lactam and fluoroquinolone resistance genes in environmental settings. The emergence and spread of such multidrug resistance is a serious threat to animal and public health.201627530857
2618190.9998The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. The spreading of extended-spectrum beta-lactamases (ESBL)-producing thermotolerant coliforms (TC) in the water environment is a threat to human health but little is known about ESBL-producing TCs in the Yangtze River. We received 319 ESBL-producing stains obtained from the Chongqing basin and we investigated antibiotic susceptibility, bla gene types and the presence of integrons and gene cassettes. 16.8% of TC isolates were ESBL-producing bacteria and bla(TEM+CTx-M) was the predominant ESBL type. 65.2% of isolates contained class 1 integrons, but only 3 carried intI 2. Gene cassettes were amplified and sequenced. aadA, drfA, cmlA, sat1, aar3 and two ORF cassettes were found. In conclusion, Yangtze River is heavily polluted by ESBL-producing TC bacteria and the combined bla gene type could enhance antibiotic resistance. Class 1 integrons were widespread in ESBL-producing isolates and play an important role in multi-drug resistance. Characterization of gene cassettes could reveal the dissemination of antibiotic resistance genes.201020447743