Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
257401.0000Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue.201627235436
257510.9999A systematic scoping review of antibiotic-resistance in drinking tap water. Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.202439341535
331720.9999Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Antibiotic-resistant Enterobacteriaceae and non-lactose fermenting Gram-negative bacteria are a major cause of nosocomial infections. Antibiotic misuse has fueled the worldwide spread of resistant bacteria and the genes responsible for antibiotic resistance (ARGs). There is evidence that ARGs are ubiquitous in non-clinical environments, especially those affected by anthropogenic activity. However, the emergence and primary sources of ARGs in the environment of countries with strict regulations for antibiotics usage are not fully explored. The aim of the present study was to evaluate the repertoire of ARGs of culturable Gram-negative bacteria from directionally connected sites from the hospital to the wastewater treatment plant (WWTP), and downstream aquatic environments in central Sweden. The ARGs were detected from genomic DNA isolated from a population of selectively cultured coliform and Gram-negative bacteria using qPCR. The results show that hospital wastewater was a reservoir of several class B β-lactamase genes such as bla (IMP-1) , bla (IMP-2), and bla (OXA-23), however, most of these genes were not observed in downstream locations. Moreover, β-lactamase genes such as bla (OXA-48), bla (CTX-M-8), and bla (SFC-1), bla (V IM-1), and bla (V IM-13) were detected in downstream river water but not in the WWTP. The results indicate that the WWTP and hospital wastewaters were reservoirs of most ARGs and contribute to the diversity of ARGs in associated natural environments. However, this study suggests that other factors may also have minor contributions to the prevalence and diversity of ARGs in natural environments.201931019498
257730.9999Molecular Detection of bla(TEM) and bla(SHV) Genes in ESBL-Producing Acinetobacter baumannii Isolated from Antarctic Soil. The phenomenon of antimicrobial resistance (AMR) in cold environments, exemplified by the Antarctic, calls into question the assumption that pristine ecosystems lack clinically significant resistance genes. This study examines the molecular basis of AMR in Acinetobacter spp. Isolated from Antarctic soil, focusing on the bla(TEM) and bla(SHV) genes associated with extended-spectrum beta-lactamase (ESBL) production; Soil samples were collected and processed to isolate Antarctic soil bacteria. Molecular detection was then conducted using polymerase chain reaction (PCR) to identify the bacteria species by 16S rRNA/rpoB and 10 different beta-lactamase-producing genes. PCR amplicons were sequenced to confirm gene identity and analyze genetic variability. Acinetobacter baumannii were identified by both microbiological and molecular tests. Notably, both the bla(TEM) and bla(SHV) genes encoding the enzymes responsible for resistance to penicillins and cephalosporins were identified, indicating the presence of resistance determinants in bacteria from extreme cold ecosystems. The nucleotide sequence analysis indicated the presence of conserved ARGs, which suggest stability and the potential for horizontal gene transfer within microbial communities. These findings emphasize that AMR is not confined to human-impacted environments but can emerge and persist in remote, cold habitats, potentially facilitated by natural reservoirs and global microbial dispersal. Understanding the presence and role of AMR in extreme environments provides insights into its global dissemination and supports the development of strategies to mitigate the spread of resistance genes in both environmental and clinical contexts.202540142377
193340.9999Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.202236139170
256450.9999Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance. Antibiotic misuse in livestock is a major threat to human health, as bacteria are quickly developing resistance to them. We performed a comparative analysis of 25 faecal metagenomes from swine, poultry, cattle, and humans to investigate their resistance profiles. Our analysis revealed that all genes conferring resistance to antibiotic classes assessed except tetracyclines were more prevalent in poultry manure than in the remaining species. We detected clinically relevant antibiotic resistance genes, such as mcr-1 which confers resistance to polymyxins. Among them, extended-spectrum β-lactamase blaCTX-M genes were particularly abundant in all species. Poultry manure was identified as a hotspot for multidrug resistance, which may compromise medical treatment options. Urgent actions in the livestock industry are imperative to hamper the emergence and spread of antibiotic resistance.202336758925
331860.9999Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Antibiotic resistant bacteria (ARB) are a major health risk caused particularly by anthropogenic activities. Acquisition of antibiotic resistances by bacteria is known to have happened before the discovery of antibiotics and can occur through different routes. Bacteriophages are thought to have an important contribution to the dissemination of antibiotic resistance genes (ARGs) in the environment. In this study, seven ARGs (bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), mecA, vanA, and mcr-1) were investigated, in the bacteriophage fraction, in raw urban and hospital wastewaters. The genes were quantified in 58 raw wastewater samples collected at five WWTPs (n = 38) and hospitals (n = 20). All genes were detected in the phage DNA fraction, with the bla genes found in higher frequency. On the other hand, mecA and mcr-1 were the least frequently detected genes. Concentrations varied between 10(2) copies/L and 10(6) copies/L. The gene coding for the resistance to colistin (mcr-1), a last-resort antibiotic for the treatment of multidrug-resistant Gram-negative infections, was identified in raw urban and hospital wastewaters with positivity rates of 19 % and 10 %, respectively. ARGs patterns varied between hospital and raw urban wastewaters, and within hospitals and WWTP. This study suggests that phages are reservoirs of ARGs, and that ARGs (with particularly emphasis on resistance to colistin and vancomycin) in the phage fraction are already widely widespread in the environment with potential large implications for public health.202337315610
330770.9998Diversity of β-lactamase-encoding genes in wastewater: bacteriophages as reporters. A reservoir of antibiotic resistance genes (ARGs) is present in pathogenic, commensal, and environmental bacteria as well as in mobile genetic elements, including bacteriophages. Wastewater treatment plants (WWTPs) are considered hotspots for the spread of ARGs. The aim of this work was to analyze the diversity of the highly prevalent ARGs bla(CTX-M) and bla(TEM) in bacterial and bacteriophage fractions associated with human and animal environments through the study of urban waste and animal residues discharged into WWTPs to provide information about the composition and maintenance of the current resistome in Buenos Aires, Argentina. The results showed that a putative extended-spectrum variant of the bla(TEM) gene was the most frequently detected, with bla(TEM-116) being the most prevalent, while a recently described type, bla(TEM-229), was also found. In the bacteriophage fraction, we detected bla(CTX-M) genes from four out of the five clusters described. The detection of bla(CTX- M-9)-like and bla(CTX-M-25)-like genes was unexpected based on surveys of the ARGs from clinical pathogens circulating regionally. The finding of divergent bla(CTX-M) sequences associated with previously reported environmental genes argues in favor of the natural environment as a reservoir of resistance genes. ARGs were detected in bacteriophages as frequently as in bacterial communities, and furthermore, the bla(CTX-M) genes were more diverse in the bacteriophage fraction. Bacteriophages might therefore play a role in the spread of ARGs in the environment, but they might also be used as "reporters" for monitoring circulating ARGs.202133683473
499480.9998Diving into the unknown: identification of antimicrobial resistance hotspots in a tropical urban estuary. Antimicrobial resistance is widely studied and well-characterized from a clinical perspective. However, considerably less information is available regarding resistance in environmental settings, especially in aquatic habitats. This study presents data regarding the occurrence, distribution and the antimicrobial susceptibility profile of bacteria isolated from Guanabara Bay (GB), a heavily polluted tropical urban estuary and an important tourist attraction in Rio de Janeiro, Brazil. Water samples from sites characterized by growing degrees of pollution were analysed by culture-dependent methods, revealing the presence of multidrug-resistant bacteria and clinically relevant indicators of antimicrobial resistance, such as extended-spectrum beta-lactamases. Isolates were identified by mass spectrometry, which indicated the presence of potential human pathogens such as Aeromonas spp. and Vibrio spp. Bacteria harbouring beta-lactam resistance genes were also detected. Although GB is widely used as a recreational and fishing area, there is a substantial knowledge gap regarding the monitoring of antimicrobial resistance and the risk that exposure to these waters poses to public health. Thus, this study reveals new information that calls for better comprehension of antimicrobial resistance in aquatic environments, especially those used for recreational purposes.202134146437
329890.9998Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) are constantly shed into the aquatic environment, with hospital wastewater potentially acting as an important source for resistance spread into the environment. A systematic review was conducted aiming to investigate the role of hospital wastewater on dissemination of antimicrobial resistance in the aquatic environment. Studies included in the review compared the prevalence of ARB and/or ARGs in hospital versus community wastewater. Data were extracted on ARB and/or ARG prevalence. Data on sampling techniques, microbiological methodology and risk of bias of included studies were recorded. Thirty-seven studies were included. Higher frequencies of antibiotic resistance determinants were found in hospital wastewater compared to community sources in 30/37 (81%) of included studies. However, trends for specific multi-drug-resistant bacteria differed. Antibiotic-resistant Gram-negative were more prevalent in hospital compared to community wastewaters, with higher concentrations of extended-spectrum-beta-lactamase-producing pathogens and carbapenemase-producing Enterobacteriaceae in hospital sources in 9/9 studies and 6/7 studies, respectively. Hospitals did not contribute consistently to the abundance of vancomycin-resistant Enterococci (VRE); 5/10 studies found higher abundance of VRE in hospital compared to community wastewaters. Reporting on sampling methods, wastewater treatment processes and statistical analysis were at high risk of bias. Extreme heterogeneity in study methods and outcome reporting precluded meta-analysis. Current evidence concurs that hospital wastewater is an important source for antibiotic resistance in aquatic environments, mainly multidrug-resistant Gram-negative bacteria. Future research is needed to assess the effect of wastewater treatment processes on overall antibiotic resistance in the aquatic environment.202032758846
2578100.9998Bacteria tolerant to colistin in coastal marine environment: Detection, microbiome diversity and antibiotic resistance genes' repertoire. The global spread of mobilized colistin resistance (mcr) genes in clinical and natural environments dangerously diminishes the effectiveness of this last-resort antibiotic, becoming an urgent health threat. We used a multidisciplinary approach to detect mcr-1 gene and colistin (CL)-resistant bacteria in seawater from two Croatian public beaches. Illumina-based sequencing of metagenomic 16S rRNA was used to assess the taxonomic, functional, and antibiotic resistance genes (ARGs) profiling of the bacterial community tolerant to CL regarding different culture-based isolation methodologies. Data revealed that the choice of methodology alters the diversity and abundance of taxa accounting for the CL-resistance phenotype. The mcr-1 gene was identified by cloning and sequencing in one sample, representing the first report of mcr-1 gene in Croatia. Culturing of CL-resistant strains revealed their resistance phenotypes and concurrent production of clinically significant β-lactamases, such as CTX-M-15, CTX-M-3 and SHV-12. We also report the first identification of bla(CTX-M-15) gene in Klebsiella huaxiensis and K. michiganensis, as well as the bla(TEM-1+CTX-M-3) in Serratia fonticola. ARGs profiles derived from metagenomic data and predicted by PICRUSt2, showed the highest abundance of genes encoding for multidrug efflux pumps, followed by the transporter genes accounting for the tetracycline, macrolide and phenicol resistance. Our study evidenced the multidrug resistance features of CL-tolerant bacterial communities thriving in surface beach waters. We also showed that combined application of the metagenomic approaches and culture-based techniques enabled successful detection of mcr-1 gene, which could be underreported in natural environment.202134289613
5720110.9998Exploring the Bacteriome and Resistome of Humans and Food-Producing Animals in Brazil. The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1) were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1), in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.202235993730
2572120.9998Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.202032947947
3285130.9998Detection of fecal bacteria and antibiotic resistance genes in drinking water collected from three First Nations communities in Manitoba, Canada. This study analyzed the microbiological quality of drinking and source water from three First Nations communities in Manitoba, Canada that vary with respect to the source, storage and distribution of drinking water. Community A relies on an aquifer and Community B on a lake as source water to their water treatment plants. Community C does not have a water treatment plant and uses well water. Quantification of free residual chlorine and fecal bacterial (E. coli and coliforms), as well as detection of antibiotic resistance genes (sul, ampC, tet(A), mecA, vanA, blaSHV, blaTEM, blaCTX-M, blaOXA-1, blaCYM-2, blaKPC, blaOXA-48, blaNDM, blaVIM, blaGES and blaIMP) was carried out. While water treatment plants were found to be working properly, as post-treatment water did not contain E. coli or coliforms, once water entered the distribution system, a decline in the chlorine concentration with a concomitant increase in bacterial counts was observed. In particular, water samples from cisterns not only contained high number of E. coli and coliforms, but were also found to contain antibiotic resistance genes. This work shows that proper maintenance of the distribution and storage systems in First Nations communities is essential in order to provide access to clean and safe drinking water.201930980671
2573140.9998Molecular Characterization and Prevalence of Antimicrobial-Resistant Escherichia coli Isolates Derived from Clinical Specimens and Environmental Habitats. Antibiotic-resistant bacteria (ARB) are present in wastewaters as their elimination during treatment in wastewater treatment plants (WWTPs) is often impossible. Water plays an important role in the spread of these microorganisms among humans, animals and the environment. This study aimed to assess the antimicrobial resistance patterns, resistance genes and molecular genotypes by means of phylogenetic groups of E. coli isolates in aquatic habitats, including sewage and receiving water bodies, as well as clinical settings in the Boeotia regional district of Greece. The highest resistance rates among both environmental and clinical isolates were observed to be for penicillins, ampicillin and piperacillin. Resistance patterns related to extended spectrum β-lactamases (ESBL) production and ESBL genes were also detected in both environmental and clinical isolates. Phylogenetic group B2 was predominant in clinical settings and the second most frequent among wastewaters, whereas group A was dominant in all environmental isolates. In conclusion, the studied river water and wastewaters may serve as reservoirs of resistant E. coli isolates that pose potential threats to both human and animal health.202337374900
2566150.9998Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions. Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were bla (CTX-M-1), bla (CTX-M-15) and bla (CMY-2) and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis.Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.202133514521
3297160.9998Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.202133919179
3934170.9998Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. BACKGROUND: There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES: To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS: We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS: A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS: The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug.202133146719
6591180.9998Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. The use of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of AMR between reservoirs demands surveillance in livestock and in humans. We quantified and characterized the acquired resistance gene pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, sequencing more than 5,000 Gb of DNA using shotgun metagenomics. We quantified acquired AMR using the ResFinder database and a second database constructed for this study, consisting of AMR genes identified through screening environmental DNA. The pig and poultry resistomes were very different in abundance and composition. There was a significant country effect on the resistomes, more so in pigs than in poultry. We found higher AMR loads in pigs, whereas poultry resistomes were more diverse. We detected several recently described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between host species and between countries. We found that the total acquired AMR level was associated with the overall country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had similar resistomes. However, functionally determined AMR genes were not associated with total drug use.201830038308
3468190.9998Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145