Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
256101.0000Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema. BACKGROUND: While there is increasing knowledge about the gut microbiome, the factors influencing and the significance of the gut resistome are still not well understood. Infant gut commensals risk transferring multidrug-resistant antibiotic resistance genes (ARGs) to pathogenic bacteria. The rapid spread of multidrug-resistant pathogenic bacteria is a worldwide public health concern. Better understanding of the naïve infant gut resistome may build the evidence base for antimicrobial stewardship in both humans and in the food industry. Given the high carriage rate of extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in Asia, we aimed to evaluate community prevalence, dynamics, and longitudinal changes in antibiotic resistance gene (ARG) profiles and prevalence of ESBL-producing E. coli and K. pneumoniae in the intestinal microbiome of infants participating in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) study, a longitudinal cohort study of pregnant women and their infants. METHODS: We analysed ARGs in the first year of life among 75 infants at risk of eczema who had stool samples collected at multiple timepoints using metagenomics. RESULTS: The mean number of ARGs per infant increased with age. The most common ARGs identified confer resistance to aminoglycoside, beta-lactam, macrolide and tetracycline antibiotics; all infants harboured these antibiotic resistance genes at some point in the first year of life. Few ARGs persisted throughout the first year of life. Beta-lactam resistant Escherichia coli and Klebsiella pneumoniae were detected in 4 (5.3%) and 32 (42.7%) of subjects respectively. CONCLUSION: In this longitudinal cohort study of infants living in a region with high endemic antibacterial resistance, we demonstrate that majority of the infants harboured several antibiotic resistance genes in their gut and showed that the infant gut resistome is diverse and dynamic over the first year of life.202032345218
256410.9998Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance. Antibiotic misuse in livestock is a major threat to human health, as bacteria are quickly developing resistance to them. We performed a comparative analysis of 25 faecal metagenomes from swine, poultry, cattle, and humans to investigate their resistance profiles. Our analysis revealed that all genes conferring resistance to antibiotic classes assessed except tetracyclines were more prevalent in poultry manure than in the remaining species. We detected clinically relevant antibiotic resistance genes, such as mcr-1 which confers resistance to polymyxins. Among them, extended-spectrum β-lactamase blaCTX-M genes were particularly abundant in all species. Poultry manure was identified as a hotspot for multidrug resistance, which may compromise medical treatment options. Urgent actions in the livestock industry are imperative to hamper the emergence and spread of antibiotic resistance.202336758925
256020.9998Metagenomic Characterization of Poultry Cloacal and Oropharyngeal Swabs in Kenya Reveals Bacterial Pathogens and Their Antimicrobial Resistance Genes. Poultry enteric bacterial diseases are of significant economic importance because they are responsible for production losses due to weight loss, increased morbidity and mortality, and increased cost of production arising from poor feed conversion and treatment. This cross-sectional purposive study characterized enteric bacterial pathogens in poultry from selected agroclimatic regions in Kenya and investigated their antimicrobial resistance gene profiles. Cloacal (n = 563) and oropharyngeal (n = 394) swabs were collected and pooled into 16 and 14 samples, respectively, to characterize bacterial pathogens and their antimicrobial resistance gene profiles. We report that Proteobacteria, Chlamydiae, and Firmicutes are the most dominant phyla present in both cloacal and oropharyngeal swabs of the six poultry species studied, indicating the colonization of the poultry gut by many pathogenic bacteria. Using KEGG and COG databases, some pathways related to metabolism, genetic information, and cellular processing were detected. We also report the abundance of antimicrobial resistance genes that confer resistance to β-lactamases, aminoglycosides, and tetracycline in most of the poultry analyzed, raising concern about the dangers associated with continuous and inappropriate use of these antibiotics in poultry production. The antimicrobial resistance gene data generated in this study provides a valuable indicator of the use of antimicrobials in poultry in Kenya. The information generated is essential for managing bacterial diseases, especially in backyard poultry raised under scavenging conditions.202438374958
193330.9998Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.202236139170
258140.9998Evaluation of the resistome and gut microbiome composition of hospitalized patients in a health unit of southern Brazil coming from a high animal husbandry production region. INTRODUCTION: Antimicrobial resistance (AMR) poses a significant threat to global public health. The One Health approach, which integrates human, animal, and environmental health, highlights the roles of agricultural and hospital settings in the propagation of AMR. This study aimed to analyze the resistome and gut microbiome composition of individuals from a high-intensity animal husbandry area in the western region of Santa Catarina, Southern Brazil, who were subsequently admitted to the University Hospital in the city of Florianopolis, located in the eastern part of the same state. METHODS: Rectal swab samples were collected upon admission and discharge. Metagenomic sequencing and resistome analysis were employed to identify antimicrobial resistance genes (ARGs) and their associated bacterial taxa. Additionally, the impact of the hospital environment on the resistome and microbiome profiles of these patients was assessed. RESULTS: A total of 247 genetic elements related to AMR were identified, with 66.4% of these elements present in both admission and discharge samples. Aminoglycoside resistance genes were the most prevalent, followed by resistance genes for tetracyclines and lincosamides. Notably, unique resistance genes, including dfrF and mutations in gyrB, were identified at discharge. ARGs were associated with 55 bacterial species, with Lactobacillus fermentum, harboring the ermB gene. (MLSB), detected in both admission and discharge samples. The most prevalent bacterial families included Mycobacteriaceae, Enterobacteriaceae, and Bacteroidaceae. Among these, Mycobacteriaceae was the most abundant, with ARGs primarily associated with mutations in the 16S rRNA gene, RNA polymerase subunits, and gyrases. DISCUSSION: The study revealed a high prevalence of genes related to aminoglycoside and tetracycline resistance, with a notable increase in certain resistance determinants at discharge, likely influenced by extended antimicrobial use. The presence of mcr genes, associated with colistin resistance, in both admission and discharge samples from a single patient highlights a concerning trend in AMR, particularly in relation to animal husbandry. These findings underscore the substantial impact of antimicrobial use on resistance development and the complex dynamics of the resistome in hospital settings. They also emphasize the influence of local factors, such as intensive animal production, on resistance patterns and advocate for ongoing surveillance and policy development to manage multidrug-resistant bacteria eVectively.202439896720
256250.9998Characterisation of Antimicrobial Resistance in Special-Fed Veal Production Environments. INTRODUCTION: Antimicrobial resistance (AMR) is one of the leading public health threats globally. AMR genes can be transferred between bacteria through lateral gene transfer, and AMR organisms can spread through environments by contaminated water, agriculture and animals. Thus, widespread environmental dissemination of bacteria and lateral gene transfer facilitate AMR transmission pathways. Farm environments in dairy and calf production are known to harbour AMR bacteria that pose a risk for food contamination and to workers in direct or indirect contact with animals. Escherichia coli is present in farm environments and is known to participate in lateral gene transfer, providing a good marker of resistance genes in each environment. METHODS: In this study, E. coli from nine cohorts of calves was isolated at different time points from nine barns, nine trailers and one slaughterhouse environment in a single special-fed veal calf production facility. The antimicrobial susceptibility to 15 antimicrobials, classified as highly or critically important by the World Health Organization, was characterised for E. coli isolates using Kirby-Bauer disk diffusion. RESULTS: The highest proportion of isolates showing multidrug resistance was present in barn environments (51.7%), where calves were housed from their arrival at < 2 weeks of age until they were transported to slaughter. Additionally, 15 E. coli isolates were resistant to 11 of the 15 antimicrobials tested. Trailer and slaughterhouse environments had greater prevalence of resistance after accommodating calves, including resistance to third-generation cephalosporins. CONCLUSION: These data highlight the importance of calf environments in the dissemination of resistant bacteria and gives insight into where interventions could be most effective in combatting antimicrobial-resistant bacteria that could infect humans and livestock.202539402773
257460.9998Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue.201627235436
572070.9998Exploring the Bacteriome and Resistome of Humans and Food-Producing Animals in Brazil. The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1) were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1), in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.202235993730
192680.9998Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure. BACKGROUND: Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). METHODS: Here, 33 bacterial isolates were recovered from broiler (n = 17) and layer (n = 16) chicken manure by aerobic culture using Luria Bertani agar. Antimicrobial susceptibility testing (AST) was performed using disc diffusion method. MALDI-ToF and 16S rRNA sequencing were used to identify and compare a subset of antibiotic-resistant isolates (n = 13). Comparison of whole genome sequence assemblies and phenotypic assays were used to assess capacity for biofilm formation, heavy metal tolerance and virulence. RESULTS: AST by disc diffusion revealed all isolates were resistant to a minimum of three antibiotics, with resistance to ampicillin, co-trimoxazole, fluoroquinolones, tetracyclines, streptomycin, rifampicin and/or chloramphenicol detected. Stutzerimonas sp. and Acinetobacter sp. were the common genera observed in this study. Genome sequencing of each selected isolate revealed carriage of multiple ARGs capable of conferring resistance to many antimicrobials commonly employed in poultry production and human medicine, including tetracyclines, quinolones, macrolides, sulfonamide and cephalosporins. CONCLUSIONS: The high occurrence of ARGs in studied bacterial isolates confirms that poultry manure could act as a source of genetic material that could be transferred to commensal microbiota and opportunistic pathogens of humans. Understanding the complex resistome interplay between humans, animals, and the environment requires a One Health approach, with implications for agricultural settings and public health.202539880102
659190.9998Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. The use of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of AMR between reservoirs demands surveillance in livestock and in humans. We quantified and characterized the acquired resistance gene pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, sequencing more than 5,000 Gb of DNA using shotgun metagenomics. We quantified acquired AMR using the ResFinder database and a second database constructed for this study, consisting of AMR genes identified through screening environmental DNA. The pig and poultry resistomes were very different in abundance and composition. There was a significant country effect on the resistomes, more so in pigs than in poultry. We found higher AMR loads in pigs, whereas poultry resistomes were more diverse. We detected several recently described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between host species and between countries. We found that the total acquired AMR level was associated with the overall country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had similar resistomes. However, functionally determined AMR genes were not associated with total drug use.201830038308
2565100.9998Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators.202541001059
5721110.9998One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum β-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species on different farms. Screening all 1,948 isolates for accessory genes encoding antibiotic resistance revealed 41 different genes present in variable proportions in human and livestock isolates. Overall, we identified a low prevalence of shared antimicrobial resistance genes between livestock and humans based on analysis of mobile genetic elements and long-read sequencing. We conclude that within the confines of our sampling framework, there was limited evidence that antimicrobial-resistant pathogens associated with serious human infection had originated from livestock in our region.IMPORTANCE The increasing prevalence of E. coli bloodstream infections is a serious public health problem. We used genomic epidemiology in a One Health study conducted in the East of England to examine putative sources of E. coli associated with serious human disease. E. coli from 1,517 patients with bloodstream infections were compared with 431 isolates from livestock farms and meat. Livestock-associated and bloodstream isolates were genetically distinct populations based on core genome and accessory genome analyses. Identical antimicrobial resistance genes were found in livestock and human isolates, but there was limited overlap in the mobile elements carrying these genes. Within the limitations of sampling, our findings do not support the idea that E. coli causing invasive disease or their resistance genes are commonly acquired from livestock in our region.201930670621
2563120.9998Dissemination of Resistant Escherichia coli Among Wild Birds, Rodents, Flies, and Calves on Dairy Farms. Antimicrobial resistance (AMR) in bacteria in the livestock is a growing problem, partly due to inappropriate use of antimicrobial drugs. Antimicrobial use (AMU) occurs in Swedish dairy farming but is restricted to the treatment of sick animals based on prescription by a veterinary practitioner. Despite these strict rules, calves shedding antimicrobial resistant Enterobacteriaceae have been recorded both in dairy farms and in slaughterhouses. Yet, not much is known how these bacteria disseminate into the local environment around dairy farms. In this study, we collected samples from four animal sources (fecal samples from calves, birds and rodents, and whole flies) and two environmental sources (cow manure drains and manure pits). From the samples, Escherichia coli was isolated and antimicrobial susceptibility testing performed. A subset of isolates was whole genome sequenced to evaluate relatedness between sources and genomic determinants such as antimicrobial resistance genes (ARGs) and the presence of plasmids were assessed. We detected both ARGs, mobile genetic elements and low rates of AMR. In particular, we observed four potential instances of bacterial clonal sharing in two different animal sources. This demonstrates resistant E. coli dissemination potential within the dairy farm, between calves and scavenger animals (rodents and flies). AMR dissemination and the zoonotic AMR risk is generally low in countries with low and restricted AMU. However, we show that interspecies dissemination does occur, and in countries that have little to no AMU restrictions this risk could be under-estimated.202235432261
2552130.9998Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. OBJECTIVES: This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND: The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS: We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS: Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS: Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.202032991620
2566140.9998Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions. Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were bla (CTX-M-1), bla (CTX-M-15) and bla (CMY-2) and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis.Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.202133514521
2558150.9998Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.202539799360
3934160.9998Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. BACKGROUND: There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES: To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS: We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS: A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS: The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug.202133146719
1932170.9998Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antimicrobial resistance bacteria are nowadays ubiquitous. Its presence has been reported in almost every type of source, from water for agricultural and recreative use, water distribution pipes, and wastewater, to food, fomites, and clinical samples. Enterobacteriaceae, especially Escherichia coli, are not the exception, showing an increased resistance to several antibiotics, causing a global health and economic burden. Therefore, the monitoring of fecal microbiota is important because it is present in numerous reservoirs where gene transfer between commensal and virulent bacteria can take place, representing a potential source of resistant E. coli. In this work, antibiotic resistance profiles of 150 E. coli isolates from environmental, animal, and human samples, collected in three rural areas in Panama, were analyzed. A total of 116 isolates were resistant to at least one of the nine antibiotics tested. Remarkably, almost 100% of these exhibited resistance to tetracycline. Plasmid-associated tetA and tetB genes were detected in 42.86% of the isolates analyzed, tetA being the most prevalent. These results suggest that tetracycline resistance would be used as a convenient indicator of genetic horizontal transfer within a community.202336830191
5667180.9998Quantifying antibiotic impact on within-patient dynamics of extended-spectrum beta-lactamase resistance. Antibiotic-induced perturbation of the human gut flora is expected to play an important role in mediating the relationship between antibiotic use and the population prevalence of antibiotic resistance in bacteria, but little is known about how antibiotics affect within-host resistance dynamics. Here we develop a data-driven model of the within-host dynamics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. We use bla(CTX-M) (the most widespread ESBL gene family) and 16S rRNA (a proxy for bacterial load) abundance data from 833 rectal swabs from 133 ESBL-positive patients followed up in a prospective cohort study in three European hospitals. We find that cefuroxime and ceftriaxone are associated with increased bla(CTX-M) abundance during treatment (21% and 10% daily increase, respectively), while treatment with meropenem, piperacillin-tazobactam, and oral ciprofloxacin is associated with decreased bla(CTX-M) (8% daily decrease for all). The model predicts that typical antibiotic exposures can have substantial long-term effects on bla(CTX-M) carriage duration.202032379042
1928190.9998Targeted Antimicrobial Resistance Gene Screening from Metagenomic DNA of Raw Milk Samples Identifies the Presence of Multiple Genes Including the mcr9. The current study has investigated the prevalence of antimicrobial resistance (AMR) genes in cow and goat raw milk samples. The misuse of antibiotics in the livestock sector has already been reported to be a major factor contributing to AMR risk. For the study, milk samples were collected from five different farms, and metagenomic DNA was extracted. Then, PCR amplification was carried out using primers specific to 15 different AMR genes. From the results obtained, the prevalence of β-lactam resistance genes, particularly blaTEM (24%), along with other genes like blaZ (12%) and blaSHV (8%), were observed in addition to the transmissible mcr9 gene (12%) conferring resistance to colistin. These findings underscore the urgent need for monitoring AMR genes and regulating antibiotic use in dairy farming to safeguard public health, as it poses a potential risk with the consumption of unpasteurized milk.202540488653