# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2545 | 0 | 1.0000 | Environmental bacterial load during surgical and ultrasound procedures in a Swedish small animal hospital. BACKGROUND: Environmental bacteria in animal healthcare facilities may constitute a risk for healthcare-associated infections (HAI). Knowledge of the bacterial microflora composition and factors influencing the environmental bacterial load can support tailored interventions to lower the risk for HAI. The aims of this study were to: (1) quantify and identify environmental bacteria in one operating room (OR) and one ultrasound room (UR) in a small animal hospital, (2) compare the bacterial load to threshold values suggested for use in human healthcare facilities, (3) characterise the genetic relationship between selected bacterial species to assess clonal dissemination, and (4) investigate factors associated with bacterial load during surgery. Settle plates were used for passive air sampling and dip slides for surface sampling. Bacteria were identified by Matrix Assisted Laser Desorption-Time Of Flight. Antimicrobial susceptibility was determined by broth microdilution. Single nucleotide polymorphism-analysis was performed to identify genetically related isolates. Linear regression was performed to analyse associations between observed explanatory factors and bacterial load. RESULTS: The bacterial load on settle plates and dip slides were low both in the OR and the UR, most of the samples were below threshold values suggested for use in human healthcare facilities. All settle plates sampled during surgery were below the threshold values suggested for use in human clean surgical procedures. Staphylococcus spp. and Micrococcus spp. were the dominating species. There was no indication of clonal relationship among the sequenced isolates. Bacteria carrying genes conveying resistance to disinfectants were revealed. Air change and compliance with hygiene routines were sufficient in the OR. No other factors possibly associated with the bacterial load were identified. CONCLUSIONS: This study presents a generally low bacterial load in the studied OR and UR, indicating a low risk of transmission of infectious agents from the clinical environment. The results show that it is possible to achieve bacterial loads below threshold values suggested for use in human healthcare facilities in ORs in small animal hospitals and thus posing a reduced risk of HAI. Bacteria carrying genes conveying resistance to disinfectants indicates that resistant bacteria can persist in the clinical environment, with increased risk for HAI. | 2024 | 39223628 |
| 3374 | 1 | 0.9997 | Characterization of Enterococcus species in surface drinking water from Akoko Edo Nigeria reveals contamination levels and risks to public health. This study focused on the assessment of drinking surface water for the presence and characteristics of Enterococcus species, which are indicative of water contamination and pose potential health risks to consumers. Our year-long investigation into several water bodies included using chromogenic medium and membrane filtering to isolate Enterococcus. The antimicrobial susceptibility of these bacteria was assessed through micro broth dilution, while virulence factors and biofilm formation were determined phenotypically. Resistance and virulence traits were detected using polymerase chain reaction (PCR) techniques. The study revealed varying bacterial densities measured in log10 CFU/100mL, with fecal coliforms, total coliforms, and Enterococcus species all present in the water, highlighting potential contamination issues. Enterococcus distribution showed a variety of species, with E. faecium being the most prevalent. Alarmingly, 63.9% of the isolates displayed multidrug resistance (MDR), and efflux pump genes associated with antimicrobial resistance were detected. The presence of virulence genes and genes associated with biofilm formation indicates the potential of these Enterococcus species to cause diseases and contribute to water quality problems. Given that this surface water serves as a drinking water source for local communities, the findings indicate a potential public health threat. The study provides crucial data for health professionals to conduct risk assessments, reducing the risk of health issues and enhancing consumer safety in relation to drinking water. | 2025 | 41173967 |
| 4980 | 2 | 0.9997 | Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. BACKGROUND: The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS: Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS: A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION: These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria. | 2025 | 39732420 |
| 3161 | 3 | 0.9997 | Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. BACKGROUND: Therapeutic and growth-promoting antibiotics are frequently used in broiler production. Indirect evidence indicates that these practices are linked to the proliferation of antimicrobial resistance (AMR), the spread of antibiotic-resistant bacteria from food animals to humans, and the environment, but there is a lack of comprehensive experimental data supporting this. We investigated the effects of growth promotor (bacitracin) and therapeutic (enrofloxacin) antibiotic administration on AMR in broilers for the duration of a production cycle, using a holistic approach that integrated both culture-dependent and culture-independent methods. We specifically focused on pathogen-harboring families (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae). RESULTS: Antibiotic-resistant bacteria and antibiotic resistance genes were ubiquitous in chicken cloaca and litter regardless of antibiotic administration. Environment (cloaca vs. litter) and growth stage were the primary drivers of variation in the microbiomes and resistomes, with increased bacterial diversity and a general decrease in abundance of the pathogen-harboring families with age. Bacitracin-fed groups had higher levels of bacitracin resistance genes and of vancomycin-resistant Enterococcaceae (total Enterococcaceae counts were not higher). Although metagenomic analyses classified 28-76% of the Enterococcaceae as the commensal human pathogens E. faecalis and E. faecium, culture-based analysis suggested that approximately 98% of the vancomycin-resistant Enterococcaceae were avian and not human-associated, suggesting differences in the taxonomic profiles of the resistant and non-resistant strains. Enrofloxacin treatments had varying effects, but generally facilitated increased relative abundance of multidrug-resistant Enterobacteriaceae strains, which were primarily E. coli. Metagenomic approaches revealed a diverse array of Staphylococcus spp., but the opportunistic pathogen S. aureus and methicillin resistance genes were not detected in culture-based or metagenomic analyses. Camphylobacteriaceae were significantly more abundant in the cloacal samples, especially in enrofloxacin-treated chickens, where a metagenome-assembled C. jejuni genome harboring fluoroquinolone and β-lactam resistance genes was identified. CONCLUSIONS: Within a "farm-to-fork, one health" perspective, considering the evidence that bacitracin and enrofloxacin used in poultry production can select for resistance, we recommend their use be regulated. Furthermore, we suggest routine surveillance of ESBL E. coli, vancomycin-resistant E. faecalis and E. faecium, and fluoroquinolone-resistant C. jejuni strains considering their pathogenic nature and capacity to disseminate AMR to the environment. Video Abstract. | 2021 | 34454634 |
| 3375 | 4 | 0.9997 | Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes. | 2018 | 29235021 |
| 1933 | 5 | 0.9997 | Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination. | 2022 | 36139170 |
| 2548 | 6 | 0.9997 | A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. INTRODUCTION: There are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time. METHODS: A population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes. RESULTS: Sheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species. DISCUSSION: The results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level. | 2023 | 36998408 |
| 5687 | 7 | 0.9997 | The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance. | 2020 | 32646458 |
| 2580 | 8 | 0.9997 | Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria. | 2024 | 38391513 |
| 3934 | 9 | 0.9997 | Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. BACKGROUND: There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES: To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS: We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS: A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS: The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug. | 2021 | 33146719 |
| 2596 | 10 | 0.9997 | 16S rRNA amplicon sequencing and antimicrobial resistance profile of intensive care units environment in 41 Brazilian hospitals. INTRODUCTION: Infections acquired during healthcare setting stay pose significant public health threats. These infections are known as Healthcare-Associated Infections (HAI), mostly caused by pathogenic bacteria, which exhibit a wide range of antimicrobial resistance. Currently, there is no knowledge about the global cleaning process of hospitals and the bacterial diversity found in ICUs of Brazilian hospitals contributing to HAI. OBJECTIVE: Characterize the microbiome and common antimicrobial resistance genes present in high-touch Intensive Care Unit (ICU) surfaces, and to identify the potential contamination of the sanitizers/processes used to clean hospital surfaces. METHODS: In this national, multicenter, observational, and prospective cohort, bacterial profiles and several antimicrobial resistance genes from 41 hospitals across 16 Brazilian states were evaluated. Using high-throughput 16S rRNA amplicon sequencing and real-time PCR, the bacterial abundance and resistance genes presence were analyzed in both ICU environments and cleaning products. RESULTS: We identified a wide diversity of microbial populations with a recurring presence of HAI-related bacteria among most of the hospitals. The median bacterial positivity rate in surface samples was high (88.24%), varying from 21.62 to 100% in different hospitals. Hospitals with the highest bacterial load in samples were also the ones with highest HAI-related abundances. Streptococcus spp., Corynebacterium spp., Staphylococcus spp., Bacillus spp., Acinetobacter spp., and bacteria from the Flavobacteriaceae family were the microorganisms most found across all hospitals. Despite each hospital particularities in bacterial composition, clustering profiles were found for surfaces and locations in the ICU. Antimicrobial resistance genes mecA, bla (KPC-like), bla (NDM-like), and bla (OXA-23-like) were the most frequently detected in surface samples. A wide variety of sanitizers were collected, with 19 different active principles in-use, and 21% of the solutions collected showed viable bacterial growth with antimicrobial resistance genes detected. CONCLUSION: This study demonstrated a diverse and spread pattern of bacteria and antimicrobial resistance genes covering a large part of the national territory in ICU surface samples and in sanitizers solutions. This data should contribute to the adoption of surveillance programs to improve HAI control strategies and demonstrate that large-scale epidemiology studies must be performed to further understand the implications of bacterial contamination in hospital surfaces and sanitizer solutions. | 2024 | 39076419 |
| 2574 | 11 | 0.9997 | Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. | 2016 | 27235436 |
| 3376 | 12 | 0.9997 | Biocide resistant and antibiotic cross-resistant potential pathogens from sewage and river water from a wastewater treatment facility in the North-West, Potchefstroom, South Africa. Exposure to antibiotics, biocides, chemical preservatives, and heavy metals in different settings such as wastewater treatment plants (WWTPs) may apply selective pressure resulting in the enrichment of multiple resistant, co- and cross-resistant strains of bacteria. The purpose of this study was to identify and characterize potentially pathogenic triclosan (TCS) - and/or, chloroxylenol (PCMX) tolerant bacteria from sewage and river water in the North-West, Potchefstroom, South Africa. Several potential pathogens were identified, with Aeromonas isolates being most abundant. Clonal relationships between Aeromonas isolates found at various sampling points were elucidated using ERIC-PCR. Selected isolates were characterized for their minimum inhibitory concentrations against the biocides, as well as antibiotic resistance profiles, followed by an evaluation of synergistic and antagonistic interactions between various antimicrobials. Isolates were also screened for the presence of extracellular enzymes associated with virulence. High-performance liquid chromatography revealed the presence of both biocides in the wastewater, but fingerprinting methods did not reveal whether the WWTP is the source from which these organisms enter the environment. Isolates exhibited various levels of resistance to antimicrobials as well as several occurrences of synergy and antagonisms between the biocides and select antibiotics. Several isolates had a very high potential for virulence but further study is required to identify the specific virulence and resistance genes associated with the isolates in question. | 2019 | 31596266 |
| 3468 | 13 | 0.9997 | Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes. | 2022 | 36089145 |
| 3467 | 14 | 0.9997 | Epidemiological characteristics of antibiotic resistance genes in various bacteria worldwide. OBJECTIVES: This study aims to investigate the epidemiological characteristics of various bacteria carrying ARGs on a global scale over extended time periods. METHODS: A total of 25,285 globally isolated bacteria's genomes were analyzed to explore ARGs. The analysis focused on temporal, geographic, and species distribution, including pathogenic and non-pathogenic bacteria, intracellular parasitic states, ARG types, and their association with MGEs. Multiple linear regression was employed to identify ARG risk factors in bacteria. RESULTS: The overall prevalence of bacteria with ARGs was 64.2%, indicating that at least one ARG was present in 64.2% (16,243/25,285) of the included bacterial, with an average of 14.4 ARGs per bacterium. ARGs have been increasing globally, averaging one additional ARG every three years, closely linked to rising antibiotic consumption. Pathogenic bacteria harbored more ARGs than non-pathogenic ones. Intracellular parasitic bacteria still carry specific types of ARGs despite being less likely to generate ARGs. Clinical and human-associated bacteria showed higher ARG counts, and bacteria isolated from humans had the highest number of disinfectant-resistant genes. The average number of ARGs in bacteria isolated from high-middle-income and lower-middle-income countries is higher. Factors like motility, non-sporulation, Gram-positive staining, extracellular parasitism, and human pathogenicity are linked to higher ARGs levels. CONCLUSIONS: An increasing number of bacteria carrying ARGs pose a significant challenge to the control of antibiotics-resistant pathogens worldwide. The issue of bacteria carrying more ARGs requires greater global attention. | 2025 | 40147137 |
| 5001 | 15 | 0.9997 | Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance. | 2023 | 37439570 |
| 2549 | 16 | 0.9997 | Effects of selective digestive decontamination (SDD) on the gut resistome. OBJECTIVES: Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. METHODS: We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. RESULTS: The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. CONCLUSIONS: ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens. | 2014 | 24710024 |
| 3402 | 17 | 0.9997 | Antibiotic resistance, virulence factors and biofilm formation ability in Escherichia coli strains isolated from chicken meat and wildlife in the Czech Republic. Attachment of pathogenic bacteria to food contact surfaces and the subsequent biofilm formation represent a serious threat for the food industry, since these bacteria are more resistant to antimicrobials or possess more virulence factors. The main aim of this study was to investigate the correlation between antibiotic resistance against 13 antibiotics, distribution of 10 virulence factors and biofilm formation in 105 Escherichia coli strains according to their origin. The high prevalence of antibiotic resistance that we have found in wildlife isolates could be acquired by horizontal transfer of resistance genes from human or domestic or farm animals. Consequently, these commensal bacteria might serve as indicator of antimicrobial usage for human and veterinary purposes in the Czech Republic. Further, 46 out of 66 resistant isolates (70%) were able to form biofilm and we found out statistically significant correlation between prevalence of antibiotic resistance and biofilm formation ability. The highest prevalence of antibiotic resistance was observed in weak biofilm producers. Biofilm formation was not statistically associated with any virulence determinant. However, we confirmed the correlation between prevalence of virulence factors and host origin. Chicken isolates possessed more virulence factors (66%), than isolates from wildlife (37%). We can conclude that the potential spread of antibiotic resistance pattern via the food chain is of high concern for public health. Even more, alarming is that E. coli isolates remain pathogenic potential with ability to form biofilm and these bacteria may persist during food processing and consequently lead to greater risks of food contamination. | 2017 | 28494209 |
| 1937 | 18 | 0.9997 | Antibiotic susceptibilities of enterococcus species isolated from hospital and domestic wastewater effluents in alice, eastern cape province of South Africa. BACKGROUND: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. METHODS: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. RESULTS: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. CONCLUSIONS: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard to the receiving aquatic environment as these could eventually be transmitted to humans and animals that are exposed to it. | 2015 | 25893999 |
| 2814 | 19 | 0.9997 | Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. The use of antimicrobials in commercial broiler poultry production results in the presence of drug-resistant bacteria shed in the excreta of these birds. Because these wastes are largely land-disposed these pathogens can affect the surrounding environment and population. In this analysis, we characterized the survival of antimicrobial-resistant enterococci and staphylococci and resistance genes in poultry litter. Temperature, moisture, and pH were measured in the litter over a 120-day period from storage sheds at three conventional US broiler chicken farms, as well as colony-forming units of Enterococcus spp. and Staphylococcus spp. Selected isolates from each sampling event were tested for resistance to eight antimicrobials used in poultry feeds as well as the presence of resistance genes and mobile genetic elements. Temperatures greater than 60 degrees C were only intermittently observed in the core of the litter piles. Both antimicrobial-resistant enterococci and staphylococci, as well as resistance genes persisted throughout the 120-day study period. Resistance genes identified in the study include: erm(A), erm(B), erm (C), msr(A/B), msr(C), and vat(E). This study indicates that typical storage practices of poultry litter are insufficient for eliminating drug-resistant enterococci and staphylococci, which may then be released into the environment through land disposal. | 2009 | 19541298 |