# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2533 | 0 | 1.0000 | Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue. | 2021 | 34822638 |
| 2534 | 1 | 0.9999 | Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa. | 2023 | 38023276 |
| 1599 | 2 | 0.9999 | Colistin Resistance Genes in Broiler Chickens in Tunisia. Colistin is a polymyxin antibiotic that has been used in veterinary medicine for decades, as a treatment for enterobacterial digestive infections as well as a prophylactic treatment and growth promoter in livestock animals, leading to the emergence and spread of colistin-resistant Gram-negative bacteria and to a great public health concern, considering that colistin is one of the last-resort antibiotics against multidrug-resistant deadly infections in clinical practice. Previous studies performed on livestock animals in Tunisia using culture-dependent methods highlighted the presence of colistin-resistant Gram-negative bacteria. In the present survey, DNA extracted from cloacal swabs from 195 broiler chickens from six farms in Tunisia was tested via molecular methods for the ten mobilized colistin resistance (mcr) genes known so far. Of the 195 animals tested, 81 (41.5%) were mcr-1 positive. All the farms tested were positive, with a prevalence ranging from 13% to 93%. These results confirm the spread of colistin resistance in livestock animals in Tunisia and suggest that the investigation of antibiotic resistance genes by culture-independent methods could be a useful means of conducting epidemiological studies on the spread of antimicrobial resistance. | 2023 | 37106971 |
| 1929 | 3 | 0.9999 | Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Antibiotics are routinely used in commercial poultry farms for the treatment of economically important bacterial diseases. Repeated use of antibiotics, usually administered in the feed or drinking water, may also result in the selection of resistant bacteria in animal feces, able to transfer their antimicrobial-resistance genes (ARG), residing on mobile elements, to other microorganisms, including human pathogens. In this study, single and multiplex PCR protocols were performed to detect tetracycline-, lincomycin-, chloramphenicol-, aminoglycoside-, colistin-, vancomycin-, and carbapenem-resistance genes, starting from 38 litter samples collected from 6 poultry and 2 turkey Italian flocks. The ARG were confirmed for all investigated classes of antimicrobials, except for colistin (mcr-1, mcr-2, mcr-3,mcr-4 mcr-5) and carbapenem (IMP, OXA-48, NDM, KPC), while the vanB gene was only detected for vancomycin. The highest positivity was obtained for tetracycline (tet[L], tet[M], tet[K], tetA[P]] and aminoglycoside (aadA2) ARG, confirming the predominant use of these antimicrobials in the veterinary practice and their potential to enhance the resistance patterns also in humans as a consequence of environmental contamination. On the contrary, the dissemination by poultry of ARG for critically important antimicrobials seems to be of minor concern, suggesting a negligible environmental dissemination by these genes in the Italian poultry industry. Finally, the molecular screening performed in this study using a noninvasive sampling method represents a simple and rapid tool for monitoring the ARG patterns at the farm level. | 2021 | 33799114 |
| 5570 | 4 | 0.9999 | Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle. The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated. | 2025 | 39858355 |
| 2536 | 5 | 0.9999 | Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980-2018). Colistin is considered to be an antimicrobial of last-resort for the treatment of multidrug-resistant Gram-negative bacterial infections. The recent global dissemination of mobilized colistin resistance (mcr) genes is an urgent public health threat. An accurate estimate of the global prevalence of mcr genes, their reservoirs and the potential pathways for human transmission are required to implement control and prevention strategies, yet such data are lacking. Publications from four English (PubMed, Scopus, the Cochrane Database of Systematic Reviews and Web of Science) and two Chinese (CNKI and WANFANG) databases published between 18 November 2015 and 30 December 2018 were identified. In this systematic review and meta-analysis, the prevalence of mcr genes in bacteria isolated from humans, animals, the environment and food products were investigated. A total of 974 publications were identified. 202 observational studies were included in the systematic review and 71 in the meta-analysis. mcr genes were reported from 47 countries across six continents and the overall average prevalence was 4.7% (0.1-9.3%). China reported the highest number of mcr-positive strains. Pathogenic Escherichia coli (54%), isolated from animals (52%) and harboring an IncI2 plasmid (34%) were the bacteria with highest prevalence of mcr genes. The estimated prevalence of mcr-1 pathogenic E. coli was higher in food-animals than in humans and food products, which suggests a role for foodborne transmission. This study provides a comprehensive assessment of prevalence of the mcr gene by source, organism, genotype and type of plasmid. | 2019 | 31623244 |
| 2532 | 6 | 0.9999 | Prevalence of ESBL-Resistant Genes in Birds in Italy-A Comprehensive Review. Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry and in Italy, where such protein production is established. ESBL-producing Escherichia coli, Salmonella and Klebsiella in chicken and turkey may pose a significant public health risk due to potential transmission between poultry and humans. This review aims to assess the prevalence of ESBL-producing E. coli, Salmonella and Klebsiella phenotypically and genotypically in Italian poultry, identifying the most common genes, detection methods and potential information gaps. An initial pool of 1462 studies found in scientific databases (Web of Sciences, PubMed, etc.) was screened and 29 were identified as eligible for our review. Of these studies, 79.3% investigated both phenotypic and genotypic ESBL expression while blaCTX-M, blaTEM and blaSHV were considered as targeted gene families. Large differences in prevalence were reported (0-100%). The blaCTX-M-1 and blaTEM-1 genes were the most prevalent in Italian territory. ESBL-producing E. coli, Salmonella and Klebsiella were frequently detected in farms and slaughterhouses, posing a potential threat to humans through contact (direct and indirect) with birds through handling, inhalation of infected dust, drinking contaminated water, ingestion of meat and meat products and the environment. Considering the frequent occurrence of ESBL-producing bacteria in Italian poultry, it is advisable to further improve biosecurity and to introduce more systematic surveillance. Additionally, the focus should be on the wild birds as they are ESBL carriers. | 2025 | 40509064 |
| 5561 | 7 | 0.9999 | Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated. | 2020 | 33171927 |
| 1600 | 8 | 0.9999 | Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli From Poultry. The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health. | 2018 | 30090095 |
| 1964 | 9 | 0.9999 | Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin. | 2025 | 40135877 |
| 1909 | 10 | 0.9999 | Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections. | 2022 | 35467407 |
| 1841 | 11 | 0.9999 | Plasmid-Determined Colistin Resistance in the North African Countries: A Systematic Review. We have conducted a systematic review to update available information on plasmid-mediated colistin resistance (mobilized colistin resistance [mcr]) genes in North African countries. We have searched the articles of PubMed, Scopus, and Web of Science databases reporting plasmid-mediated colistin resistance bacteria isolated in North African countries. After searching and selection, 30 studies that included 208 mcr-positive isolates were included. Different mcr-positive strains frequencies were recorded and ranged from 2% in clinical isolates to 12.3% in environmental samples. Escherichia coli was the predominant species recorded and these microorganisms showed high resistance to ciprofloxacin and cotrimoxazole. IncHI2 plasmids are probably the key vectors responsible for the dissemination of mcr genes in these countries. This review highlighted that the mcr-positive isolates are circulating in different ecological niches with different frequencies. Therefore, actions should be implemented to prevent the dissemination of the mcr genes within and outside of these countries, such as microbiological and molecular surveillance programs and restriction use of colistin in farming. | 2021 | 32522081 |
| 5571 | 12 | 0.9999 | ESβL E. coli isolated in pig's chain: Genetic analysis associated to the phenotype and biofilm synthesis evaluation. Resistance to new generation cephalosporins is an important public health problem globally, in terms of economic and social costs, morbidity and mortality. Βeta-lactamase enzymes are mainly responsible for the antibiotic resistance of Gram negative bacteria and extended-spectrum-β-lactamases (ESβLs) are one of the major determinants of resistance against oxymino-cephalosporins in Enterobacteriaceae. Food-producing animals represent one of the sources of antibiotic resistant bacteria, including pigs. Here we analysed the presence of E. coli resistant to III generation cephalosporins isolated from different matrices collected from intensively bred pigs. A total of 498 E. coli were isolated from faeces and carcasses of pigs at slaughterhouse as well as from pork meat and sausages. Among these, 73 were phenotypically confirmed to be ESβL producers. Genetic analysis revealed that all except two harboured at least one of the three selected genes: bla(CTX-M), bla(TEM), and bla(SHV). Furthermore, six of the E. coli ESβL isolated from faeces and carcasses swabs, were also able to produce biofilm, highlighting the virulence potential of these strains. The presence of Multi-Drug-Resistance patterns (MDR) recorded by the 73 ESβL E. coli was significant (60% of the strains were resistant to more than six antibiotics in MIC test). Results from the present study show that the transmission of resistant bacteria is possible along the food chain, including production of pork, one the most highly consumed meats around the world. Transmission is possible through the ingestion of raw meat products, and following cross-contamination between raw and cooked foods during preparation. The potential risk for human health demonstrated here, associated with the consumption of pork contaminated with bacterial strains characterized by multidrug resistance patterns, and the ability to produce ESβL and biofilm, is cause for concern. It is imperative to study future control strategies to avoid or limit as much as possible the transmission of these highly pathogenic strains through food consumption and/or contact with the environment. | 2019 | 30245289 |
| 1603 | 13 | 0.9998 | Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California. The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even more worrisome, urging us to investigate the prevalence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from livestock, wildlife, produce and other environmental sources in a major production region for leafy vegetables in California during 2006-2014, were screened by PCR for the presence of plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural region. This study provides valuable information such as sample size needed and methodologies for future surveillance programs of antimicrobial resistance. | 2017 | 29117270 |
| 5719 | 14 | 0.9998 | Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla (TEM-1B) (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla (CTX-M) type or bla (SHV), or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli. | 2025 | 40131333 |
| 5666 | 15 | 0.9998 | Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. BACKGROUND: Antimicrobial resistance to colistin, a widely used feed additive for farm animals across the world, has raised public health concern in recent years. Since July 2018, its use as feed additive has been banned in Japan to reduce the spread of plasmid-based mobilized colistin resistance (mcr) genes and the subsequent development of colistin-resistant bacteria. Evaluating the effects of these measures is required. METHODS: We evaluated the effects of colistin use, as a feed additive, on colistin resistance in pigs (n=5) from birth to finishing in the farm. Moreover, to evaluate changes in colistin resistance and mcr gene prevalence in response to colistin withdrawal, E. coli samples derived from pig faeces sourced from the fields of three geographically distinct farms were characterized before and after the withdrawal of colistin as a feed additive. RESULTS: Colistin-resistant Escherichia coli in pigs (n=5) increased during the colistin administration period and decreased immediately after its end. In three fields, the colistin resistance rate and prevalence of mcr-1 decreased immediately and significantly after the ban. However, colistin-resistant and mcr-1-positive E. coli were still detected in all three farm fields 12 months after the ban on colistin use. CONCLUSION: Agricultural colistin use caused selective pressure that contributed to widespread mcr dissemination in Japan. Colistin resistance and the presence of mcr genes should be continuously monitored in food-producing animals. | 2021 | 33545419 |
| 5562 | 16 | 0.9998 | Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit. | 2023 | 37998840 |
| 1935 | 17 | 0.9998 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 1939 | 18 | 0.9998 | Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m(-3) and an average inhalable aerobic bacterial concentration of 73 CFU∙m(-3), with no significant difference (P > 0.05) among the three wards. All isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive strains was mainly TEM gene, and the detection rate was 66.67% (8/12). According to a homology analysis with PFGE, 100% homologous E. coli from the ward at 5 m and 10 m outside the ward in the corridor shared the same drug-resistance spectrum, which further proves that airborne E. coli carrying a drug-resistance gene spreads out of the ward through gas exchange. This leads to biological pollution inside, outside, and around the ward, which poses a direct threat to the health of patients, healthcare workers, and surrounding residents. It is also the main reason for the antibiotic resistance in the hospital environment. More attention should be paid to comprehensive hygiene management in the surrounding environment of hospitals. | 2020 | 32070803 |
| 2558 | 19 | 0.9998 | Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats. | 2025 | 39799360 |