Antibiotic-Resistant Bacteria Isolated from Street Foods: A Systematic Review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
252901.0000Antibiotic-Resistant Bacteria Isolated from Street Foods: A Systematic Review. Street food may be a vehicle of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) to humans. Foods contaminated with ARB entail serious problems or challenges in the fields of medical care, animal husbandry, food industry, and public health worldwide. The objectives of this systematic review were to identify and evaluate scientific reports associated with ARB isolated from various street foods. "Preferred reporting items for systematic reviews and meta-analysis" (PRISMA) guidelines were followed. The bibliographic material covers a period from January 2015 to April 2024. Six electronic scientific databases were searched individually for full-text articles; only those papers that met the inclusion and exclusion criteria were selected. Seventeen papers were included in this systematic review. This study highlighted the wide distribution of ARB resistant to β-lactams and other antibiotics, posing significant health risks to consumers. High resistance levels were observed for antibiotics such as ampicillin, ceftriaxone, and tetracycline, while some antibiotics, such as ceftazidime, clavulanic acid, cefoperazone, cotrimoxazole, doxycycline, doripenem, fosfomycin, vancomycin, and piperacillin-tazobactam, demonstrated 100% susceptibility. The prevalence of ARB in street foods varied between 5.2% and 70.8% among different countries. The multiple resistance of various bacteria, including Escherichia coli, Staphylococcus, Salmonella, and Klebsiella, to multiple classes of antibiotics, as well as environmental factors contributing to the spread of antibiotic resistance (AR), emphasize the urgent need for comprehensive approaches and coordinated efforts to confront antimicrobial resistance (AMR) under the "One Health" paradigm.202438927148
253010.9999Antimicrobial Resistance in the WHO African Region: A Systematic Literature Review 2016-2020. Antimicrobial resistance (AMR) is a significant global public health threat. This review presents the most recent in-depth review of the situation of the main AMR types in relation to the most commonly prescribed antibiotics in the World Health Organization (WHO) African Region. Underlying genes of resistance have been analyzed where possible. A search to capture published research data on AMR from articles published between 2016 and 2020 was done using PubMed and Google Scholar, with rigorous inclusion/exclusion criteria. Out of 48003 articles, only 167 were included. Among the tested gram-negative bacteria species, Klebsiella spp. remain the most tested, and generally the most resistant. The highest overall phenotypic resistance for imipenem was reported in E. coli, whereas for meropenem, E. coli and Haemophilus spp. showed an equal resistance proportion at 2.5%. For gram-positive bacteria, Streptococcus pneumoniae displayed high resistance percentages to trimethoprim/sulfamethoxazole (64.3%), oxacillin (32.2%), penicillin (23.2%), and tetracycline (28.3%), whereas Staphylococcus aureus contributed to 22.8% and 10% resistance to penicillin and oxacillin, respectively. This review shows that AMR remains a major public health threat. The present findings will help public health decision-makers in developing efficient preventive strategies and adequate policies for antibiotic stewardship and surveillance in line with the global action plan for AMR.202439061341
499820.9998Microbial Contamination and Antibiotic Resistance in Fresh Produce and Agro-Ecosystems in South Asia-A Systematic Review. Fresh produce prone to microbial contamination is a potential reservoir for antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), posing challenges to food safety and public health. This systematic review aims to comprehensively assess the prevalence of bacterial pathogens and the incidence of ARB/ARGs in fresh produce and agro-ecosystems across South Asia. Twenty-two relevant studies published between 2012 and 2022 from three major scientific databases and the grey literature were identified. The results revealed a wide occurrence of microbial contamination in various types of fresh produce across South Asia, with a predominance of E. coli (16/22), Salmonella spp. (13/22), Staphylococcus spp. (5/22), and Klebsiella spp. (4/22). The agro-ecosystem serves as a complex interface for microbial interactions; studies have reported the prevalence of E. coli (1/4), Salmonella spp. (1/4) and Listeria monocytogenes (1/4) in farm environment samples. A concerning prevalence of ARB has been reported, with resistance to multiple classes of antibiotics. The presence of ARGs in fresh produce underscores the potential for gene transfer and the emergence of resistant pathogens. To conclude, our review provides insights into the requirements of enhanced surveillance, collaborative efforts, implementation of good agricultural practices, and public awareness for food safety and safeguarding public health in the region.202439597656
257230.9998Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.202032947947
258640.9998A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach.202540426503
499750.9998Isolation and Molecular Characterization of Antimicrobial-Resistant Bacteria from Vegetable Foods. Antimicrobial resistance (AMR) poses a growing threat to global health, and its spread through the food chain is gaining increasing attention. While AMR in food of animal origin has been extensively studied, less is known about its prevalence in plant-based foods, particularly fresh and ready-to-eat (RTE) vegetables. This study investigated the occurrence of antimicrobial-resistant bacteria in fresh and RTE vegetables. Isolates were subjected to antimicrobial susceptibility testing and molecular analyses for the characterization of antimicrobial resistance genes (ARGs). A significant proportion of samples were found to harbor antimicrobial-resistant bacteria, including multidrug-resistant strains. Several ARGs, including those encoding extended-spectrum β-lactamases (ESBLs) and resistance to critically important antimicrobials, were detected. The findings point to environmental contamination-potentially originating from wastewater reuse and agricultural practices-as a likely contributor to AMR dissemination in vegetables. The presence of antimicrobial-resistant bacteria and ARGs in fresh produce raises concerns about food safety and public health. The current regulatory framework lacks specific criteria for monitoring AMR in vegetables, highlighting the urgent need for surveillance programs and risk mitigation strategies. This study contributes to a better understanding of AMR in the plant-based food sector and supports the implementation of a One Health approach to address this issue.202540732728
258560.9998A scoping review of the prevalence of antimicrobial-resistant pathogens and signatures in ready-to-eat street foods in Africa: implications for public health. BACKGROUND AND OBJECTIVE: Despite its critical role in individual and societal health, food hygiene remains underexplored. Antibiotic-resistant pathogenic bacteria in ready-to-eat (RTE) food threaten public health. This scoping review collected data on the epidemiological prevalence of RTE food-contaminated pathogens resistant to antimicrobial drugs and resistance genes in Africa. METHOD: Using electronic databases, such as PubMed, Scopus, and Web of Science (WoS), handpicked from references, pre-reviewed published articles were retrieved and analyzed according to the PRISMA-ScR guidelines. RESULTS: The findings indicate 40 previewed published articles qualified for meta-synthesis in the scoping review with a population/case ratio of 11,653/5,338 (45.80%). The most frequently reported RTE foods were meat or beef/beef-soup, chicken or poultry products, salads, vegetable salads, and sandwiches, which harboured pathogens such as E. coli, Salmonella, and Staphylococcus. Antibiotic susceptibility tests revealed the use of 48 antibiotics to manage infections, following CLSI (Clinical and Laboratory Standards Institute) protocols. Moreover, 10 authors reported 54 resistance genes associated with pathogenic resistant bacteria. In addition, only 15 studies received funding or financial support. CONCLUSION: These findings from several researchers indicate that RTE street foods in African and resource-limited nations harbour enteric pathogens and are a significant concern to the public health system and reservoir of the spread of antibiotic resistance. This underscores the necessity of implementing effective control strategies to address challenges and limit the spread of resistant bacteria in RTE foods. The antimicrobial resistance surveillance system in the region is a significant concern. Notably, Africa needs to strengthen the national and international regulatory bodies and a health surveillance system on antimicrobial resistance, particularly among developing nations.202540270817
500870.9998Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. BACKGROUND: The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY: The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the (bla)CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION: The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making.202032762743
499680.9998Antimicrobial resistance of Escherichia coli isolated from fish and aquaculture water: an emerging concern for consumers. Antimicrobial resistance (AMR) constitutes a significant global health threat, exacerbated using antimicrobials in aquaculture, which accelerates the spread of resistant bacteria. In fish and aquaculture water, Escherichia coli acts as a key reservoir and vector for AMR, facilitating the dissemination of strains resistant to critically important antibiotics such as carbapenems and colistin, often through the production of enzymes such as extended-spectrum ß-lactamases. This review aimed to synthesize recent findings on AMR patterns and associated genes in E. coli from fish and aquaculture waters globally. Studies indicate a high prevalence of resistant E. coli, with multidrug resistance to β-lactams, tetracyclines, quinolones, and sulfonamides. Common resistance genes identified include blaTEM, blaCTX-M, tet(A), sul1, and qnrS. The presence of bacterial strains harboring these resistance genes poses a significant public health risk through transmission in the food chain and the environment. The study concludes that tackling this challenge effectively demands robust surveillance, optimized aquaculture management, responsible antimicrobial stewardship, and a cohesive One Health framework aimed at reducing AMR in aquaculture and preserving public health.202540693960
497990.9998Emerging threat: Antimicrobial resistance proliferation during epidemics - A case study of the SARS-CoV-2 pandemic in South Brazil. The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum β-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.202438581873
5562100.9998Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit.202337998840
2588110.9998Exposure factors associated with antimicrobial resistance and identification of management practices for preharvest mitigation along broiler production systems: A systematic review. OBJECTIVE: This systematic review aimed to (i) determine the risk of antimicrobial resistance (AMR) development associated with antimicrobial use (AMU) and other exposure factors in broilers, and (ii) identify best management practices to mitigate preharvest AMR development of enteric bacteria alongside broiler production. METHODS: Study selection criteria comprised the population, exposure or intervention, comparator, and outcome framework and included broiler (population), AMU or other management practices (exposure or intervention), organic or antibiotic-free production (comparator), and the presence of AMR-enteric bacteria/genes (outcome). Peer-reviewed primary research studies were searched in PubMed on 19 December 2022, and AGRICOLA, Embase, Scopus, and Web of Science on 10 February 2023. The risk of bias in studies was assessed using the modified ROBIS-E risk of bias assessment tool. The results were synthesised and presented narratively according to PRISMA 2020 guidelines. RESULTS: In total, 205/2699 studies were subjected to full-text review, with 15 included in the final synthesis. Enteric bacteria Escherichia coli, Salmonella(,) and Campylobacter exhibited AMR and multidrug resistance against several critically important antimicrobials (aminoglycoside, cephalosporin, chloramphenicol, macrolide, penicillin, quinolone, tetracycline, and sulfonamide) for human health. The risk of AMR development in bacteria was shown to be potentially higher with AMU in broiler production. Substandard farm management practices, poor biosecurity measures, and conventional production systems have also been associated with the dissemination of AMR in bacteria. CONCLUSIONS: Our findings indicate that AMU exposure is associated with considerably higher risk of AMR development in enteric bacteria. Antimicrobial stewardship, organic/antibiotic-free broiler production, good farm management practices, and high-level biosecurity measures are able to substantially mitigate preharvest AMR development in enteric bacteria. However, most of studies were cross-sectional, and therefore causal inference cannot be established.202439490979
4978120.9998Progresses on the prevalence and mechanism of vancomycin- resistant bacteria. Vancomycin, a glycopeptide antibiotic, serves as the last-resort treatment for infections caused by methicillin- resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and Clostridium difficile. However, the emergence of various vancomycin-resistant bacterial strains worldwide poses a significant challenge to clinical therapy. Adopting the "One Health" concept, we mainly present the prevalence of vancomycin-resistant bacteria over the past decade from 40 human, animal, environmental, and food sources across various regions, both domestically and internationally. The statistical results indicate that vancomycin-resistant bacteria are primarily concentrated in hospitals and their surrounding environments. The prevalence of resistant bacteria in hospital wastewater in South Africa reaches as high as 96.77%, followed by Pakistan and China's Taiwan region, where the resistance rates are 56.5% and 29.02%, respectively. The vancomycin average resistance rate in domestic human-source bacteria (1.41%) is overall higher than that in international human-source bacteria (0.47%). The prevalence of resistant bacteria in pediatric patients across various regions is relatively low (<1%). It is worth noting that although the use of vancomycin is prohibited in livestock farming, vancomycin- resistant bacteria can still be detected in livestock, related products and environment, posing a potential threat to human health. Based on the statistical analysis results, we summarize several common vancomycin resistance mechanisms and the transmission mechanisms, and clarify the differences in the prevalence of resistant bacteria across the "human-animal-food-environment" interface for further analyzing the distribution and transmission risks of vancomycin-resistant bacteria in different hosts worldwide. This review can also provide references for the prevention and control of antimicrobial resistance.202540528468
2558130.9998Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.202539799360
2534140.9998Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.202338023276
2535150.9997Mobile Colistin Resistance (mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.202235745552
5683160.9997Association between antimicrobial resistance among Enterobacteriaceae and burden of environmental bacteria in hospital acquired infections: analysis of clinical studies and national reports. BACKGROUND: WHO has named three groups of gram-negative bacteria "our critical antimicrobial resistance-related problems globally". It is thus a priority to unveil any important covariation of variables behind this three-headed epidemic, which has gained alarming proportions in Low Income Countries, and spreads rapidly. Environmental bacteria including Acinetobacter spp. are common nosocomial pathogens in institutions that have high rates of antimicrobial resistance among other groups of gram-negative bacteria. METHODS: Based on two different data sources, we calculated the correlation coefficient (Pearson's r) between pathogenic burden of Acinetobacter spp. and antimicrobial resistance among Enterobacteriaceae in European and African nosocomial cohorts. CLINICAL REPORTS: Database search for studies on nosocomial sepsis in Europe and Africa was followed by a PRISMA-guided selection process. NATIONAL REPORTS: Data from Point prevalence survey of healthcare-associated infections published by European Centre for Disease Prevention and Control were used to study the correlation between prevalence of Acinetobacter spp. and antimicrobial resistance among K. pneumoniae in blood culture isolates. FINDINGS: The two approaches both revealed a strong association between prevalence of Acinetobacter spp. and rates of resistance against 3. generation cephalosporins among Enterobacteriaceae. In the study of clinical reports (13 selected studies included), r was 0.96 (0.80-0.99) when calculated by proportions on log scale. Based on national reports, r was 0.80 (0.56-0.92) for the correlation between resistance rates of K. pneumoniae and proportion of Acinetobacter spp. INTERPRETATION: The critical antimicrobial resistance-related epidemics that concern enteric and environmental gram-negative bacteria are not independent epidemics; they have a common promoting factor, or they are mutually supportive. Further, accumulation of antimicrobial resistance in nosocomial settings depends on the therapeutic environment. Burden of Acinetobacter spp. as defined here is a candidate measure for this dependence.201931372534
6627170.9997Antibiotic resistance profiles on pathogenic bacteria in the Brazilian environments. The present study aimed to elaborate a review of multidrug-resistant (MDR) bacteria in soil, food, aquatic environments, cattle, poultry, and swine farms in Brazil. Initially, the literature database for published papers from 2012 to 2023 was Scientific Electronic Library Online (SciELO), U.S. National Library of Medicine (PubMed), and Google Scholar, through the descriptors: antimicrobial resistance, resistance profile, multidrug resistance, environmental bacteria, and pathogenic bacteria. The studies demonstrated the prevalence of pathogenic and resistant bacteria in environments that favor their rapid dissemination. Bacteria of medical importance, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio spp., were present in samples from animal farms and foods, including cheese and milk, urban aquatic environments, hospital effluents, and shrimp farms. Studies suggested that important bacteria have been disseminated through different niches with easy contact with humans, animals, and food, demonstrating the danger of the emergence of increasingly difficult conditions for treating and controlling these infections. Thus, better understanding and characterizing the resistance profiles of bacteria in these regions, mainly referring to MDR bacteria, can help develop solutions to prevent the progression of this public health problem.202337043091
1909180.9997Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections.202235467407
5563190.9997Exploring the Prevalence of Antimicrobial Resistance in Salmonella and commensal Escherichia coli from Non-Traditional Companion Animals: A Pilot Study. Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z(15) and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.202438398679