# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2501 | 0 | 1.0000 | Second-Generation Tryptamine Derivatives Potently Sensitize Colistin Resistant Bacteria to Colistin. Antibiotic resistance has significantly increased since the beginning of the 21st century. Currently, the polymyxin colistin is typically viewed as the antibiotic of last resort for the treatment of multidrug resistant Gram-negative bacterial infections. However, increased colistin usage has resulted in colistin-resistant bacterial isolates becoming more common. The recent dissemination of plasmid-borne colistin resistance genes (mcr 1-8) into the human pathogen pool is further threatening to render colistin therapy ineffective. New methods to combat antibiotic resistant pathogens are needed. Herein, the utilization of a colistin-adjuvant combination that is effective against colistin-resistant bacteria is described. At 5 μM, the lead adjuvant, which is nontoxic to the bacteria alone, increases colistin efficacy 32-fold against bacteria containing the mcr-1 gene and effects a 1024-fold increase in colistin efficacy against bacteria harboring chromosomally encoded colistin resistance determinants; these combinations lower the colistin minimum inhibitory concentration (MIC) to or below clinical breakpoint levels (≤2 μg/mL). | 2019 | 31098007 |
| 5024 | 1 | 0.9998 | Colistin Resistance in Enterobacterales Strains - A Current View. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 - mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. | 2019 | 31880886 |
| 4864 | 2 | 0.9997 | Colistin resistance mechanisms in Gram-negative bacteria: a Focus on Escherichia coli. Multidrug-resistant (MDR) Escherichia coli strains have rapidly increased worldwide, and effective antibiotic therapeutic options are becoming more restricted. As a polymyxin antibiotic, colistin has a long history of usage, and it is used as a final line of treatment for severe infections by Gram-negative bacteria (GNB) with high-level resistance. However, its application has been challenged by the emergence of E. coli colistin resistance. Hence, determining the mechanism that confers colistin resistance is crucial for monitoring and controlling the dissemination of colistin-resistant E. coli strains. This comprehensive review summarizes colistin resistance mechanisms in E. coli strains and concentrates on the history, mode of action, and therapeutic implications of colistin. We have mainly focused on the fundamental mechanisms of colistin resistance that are mediated by chromosomal or plasmid elements and discussed major mutations in the two-component systems (TCSs) genes and plasmids that transmit the mobilized colistin resistance resistant genes in E. coli strains. | 2023 | 36754367 |
| 4870 | 3 | 0.9997 | Emergent Polymyxin Resistance: End of an Era? Until recently, the polymyxin antibiotics were sparingly used due to dose limiting toxicities. However, the lack of therapeutic alternatives for infections caused by highly resistant Gram-negative bacteria has led to the increased use of the polymyxins. Unfortunately, in the last decade the world has witnessed increased rates of polymyxin resistance, which is likely in part due to its irrational use in human and veterinary medicine. The spread of polymyxin-resistance has been aided by the dissemination of the transferable polymyxin-resistance gene, mcr, in humans and the environment. The mortality of colistin-resistant bacteria infections varies in different reports. However, poor clinical outcome was associated with prior colistin treatment, illness severity, complications and multidrug resistance. Detection of polymyxin-resistance in the clinic is possible through multiple robust and practical tests including broth microdilution susceptibility testing, chromogenic agar testing, and molecular biology assays. There are multiple risk factors that increase a person's risk for infection with a polymyxin-resistant bacteria including age, prior colistin treatment, hospitalization and ventilator support. For patients that are determined to be infected by polymyxin-resistant bacteria, various antibiotic treatment options currently exist. The rising trend of polymyxin-resistance threatens patient care and warrants an effective control. | 2019 | 31420655 |
| 5059 | 4 | 0.9997 | Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE: Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria. | 2024 | 39611852 |
| 5754 | 5 | 0.9997 | Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. OBJECTIVES: Efflux in bacteria is a ubiquitous mechanism associated with resistance to antimicrobials agents. Efflux pump inhibitors (EPIs) have been developed to inhibit efflux mechanisms and could be a good alternative to reverse colistin resistance, but only CCCP has shown good activity. The aim of our study was to identify CCCP activity in a collection of 93 Gram-negative bacteria with known and unknown colistin resistance mechanisms including isolates with mcr-1 plasmid-mediated colistin resistance. METHODS: Colistin MIC was evaluated with and without CCCP and the fold decrease of colistin MIC was calculated for each strain. In order to evaluate the effect of this combination, a time-kill study was performed on five strains carrying different colistin resistance mechanisms. RESULTS: Overall, CCCP was able to reverse colistin resistance for all strains tested. The effect of CCCP was significantly greater on intrinsically colistin-resistant bacteria (i.e. Proteus spp., Serratia marcescens, Morganella morganii and Providencia spp.) than on other Enterobacteriaceae (P < 0.0001). The same was true for bacteria with a heteroresistance mechanism compared to bacteria with other colistin resistance mechanisms (P < 0.0001). A time-kill study showed the combination was bacteriostatic on strains tested. CONCLUSIONS: These results suggest an efflux mechanism, especially on intrinsically resistant bacteria and Enterobacter spp., but further analysis is needed to identify the molecular support of this mechanism. EPIs could be an alternative for restoring colistin activity in Gram-negative bacteria. Further work is necessary to identify new EPIs that could be used in humans. | 2018 | 29718423 |
| 4952 | 6 | 0.9997 | Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria(1). Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection(2,3). Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E. coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics. | 2019 | 31235960 |
| 5060 | 7 | 0.9997 | Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen.IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates. | 2020 | 32161146 |
| 5690 | 8 | 0.9997 | Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli. Colistin is one of the last-resort antibiotics for infections caused by multidrug-resistant Gram-negative bacteria. However, the wide spread of novel plasmid-carrying colistin resistance genes mcr-1 and its variants substantially compromise colistin's therapeutic effectiveness and pose a severe danger to public health. To detect colistin-resistant microorganisms induced by mcr genes, rapid and reliable antibiotic susceptibility testing (AST) is imminently needed. In this study, we identified an RNA-based AST (RBAST) to discriminate between colistin-susceptible and mcr-1-mediated colistin-resistant bacteria. After short-time colistin treatment, RBAST can detect differentially expressed RNA biomarkers in bacteria. Those candidate mRNA biomarkers were successfully verified within colistin exposure temporal shifts, concentration shifts, and other mcr-1 variants. Furthermore, a group of clinical strains were effectively distinguished by using the RBAST approach during the 3-h test duration with over 93% accuracy. Taken together, our findings imply that certain mRNA transcripts produced in response to colistin treatment might be useful indicators for the development of fast AST for mcr-positive bacteria. IMPORTANCE The emergence and prevalence of mcr-1 and its variants in humans, animals, and the environment pose a global public health threat. There is a pressing urgency to develop rapid and accurate methods to identify MCR-positive colistin-resistant bacteria in the clinical samples, providing a basis for subsequent effective antibiotic treatment. Using the specific mRNA signatures, we develop an RNA-based antibiotic susceptibility testing (RBAST) for effectively distinguishing colistin-susceptible and mcr-1-mediated colistin-resistant strains. Meanwhile, the detection efficiency of these RNA biomarkers was evidenced in other mcr variants-carrying strains. By comparing with the traditional AST method, the RBAST method was verified to successfully characterize a set of clinical isolates during 3 h assay time with over 93% accuracy. Our study provides a feasible method for the rapid detection of colistin-resistant strains in clinical practice. | 2022 | 35616398 |
| 4951 | 9 | 0.9997 | Aeromonas and mcr-3: A Critical Juncture for Transferable Polymyxin Resistance in Gram-Negative Bacteria. Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes (mcr) is becoming increasingly important. The Aeromonas genus is widely disseminated throughout the environment and serves as a reservoir of mcr-3, posing a significant risk for the spread of resistance to polymyxins. Recent phylogenetic studies and the identification of insertion elements associated with mcr-3 support the notion that Aeromonas spp. may be the evolutionary origin of the resistance gene. Furthermore, mcr-3-related genes have been shown to impart resistance in naïve E. coli and can increase the polymyxin MIC by up to 64-fold (with an MIC of 64 mg/L) in members of Aeromonas spp. This review will describe the genetic background of the mcr gene, the epidemiology of mcr-positive isolates, and the relationship between intrinsic and transferable mcr resistance genes, focusing on mcr-3 and mcr-3-related genes. | 2024 | 39599474 |
| 5023 | 10 | 0.9997 | Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOS(R)) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOS(R) type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection. | 2023 | 37469601 |
| 5691 | 11 | 0.9997 | Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. The emergence and prevalence of novel plasmid-mediated tigecycline resistance genes, namely, tet(X) and their variants, pose a serious threat to public health worldwide. Rapid and accurate antibiotic susceptibility testing (AST) that can simultaneously detect the genotype and phenotype of tet(X)-positive bacteria may contribute to the deployment of an effective antibiotic arsenal, mortality reduction, and a decrease in the use of broad-spectrum antimicrobial agents. However, current bacterial growth-based AST methods, such as broth microdilution, are time consuming and delay the prompt treatment of infectious diseases. Here, we developed a rapid RNA-based AST (RBAST) assay to effectively distinguish tet(X)-positive and -negative strains. RBAST works by detecting specific mRNA expression signatures in bacteria after short-term tigecycline exposure. As a proof of concept, a panel of clinical isolates was characterized successfully by using the RBAST method, with a 3-h assay time and 87.9% accuracy (95% confidence interval [CI], 71.8% to 96.6%). Altogether, our findings suggest that RNA signatures upon antibiotic exposure are promising biomarkers for the development of rapid AST, which could inform early antibiotic choices. IMPORTANCE Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet(X), severely diminishes its clinical efficacy. Currently, there is a lack of rapid and accurate antibiotic susceptibility testing (AST) for the detection of tet(X)-positive bacteria. In this study, we developed a rapid and robust RNA-based antibiotic susceptibility determination (RBAST) assay to effectively distinguish tet(X)-negative and -positive strains using specific RNA biomarkers in bacteria after tigecycline exposure. Using this RBAST method, we successfully characterized a set of clinical strains in 3 h. Our data indicate that the RBAST assay is useful for identifying tet(X)-positive Escherichia coli. | 2021 | 34704829 |
| 5837 | 12 | 0.9997 | The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials. | 2017 | 28198411 |
| 4865 | 13 | 0.9997 | Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance. | 2019 | 31190901 |
| 2502 | 14 | 0.9997 | Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria. With the dissemination of extremely drug resistant bacteria, colistin is now considered as the last-resort therapy for the treatment of infection caused by Gram-negative bacilli (including carbapenemase producers). Unfortunately, the increase use of colistin has resulted in the emergence of resistance as well. In A. baumannii, colistin resistance is mostly caused by the addition of phosphoethanolamine to the lipid A through the action of a phosphoethanolamine transferase chromosomally-encoded by the pmrC gene, which is regulated by the two-component system PmrA/PmrB. In A. baumannii clinical isolate the main resistance mechanism to colistin involves mutations in pmrA, pmrB or pmrC genes leading to the overexpression of pmrC. Although, rapid detection of resistance is one of the key issues to improve the treatment of infected patient, detection of colistin resistance in A. baumannii still relies on MIC determination through microdilution, which is time-consuming (16-24 h). Here, we evaluated the performance of a recently described MALDI-TOF-based assay, the MALDIxin test, which allows the rapid detection of colistin resistance-related modifications to lipid A (i.e phosphoethanolamine addition). This test accurately detected all colistin-resistant A. baumannii isolates in less than 15 minutes, directly on intact bacteria with a very limited sample preparation prior MALDI-TOF analysis. | 2018 | 30442963 |
| 5022 | 15 | 0.9997 | HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes. Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum β-lactamases (ESBL) and carbapenemases as "critical" priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 μg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids.IMPORTANCE More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections. | 2020 | 32098822 |
| 9768 | 16 | 0.9997 | Inosine monophosphate overcomes the coexisting resistance of mcr-1 and bla(NDM-1) in Escherichia coli. INTRODUCTION: The rise of antibiotic-resistant bacteria, particularly those harboring mcr-1 and bla(NDM-1), threatens public health by reducing the efficacy of colistin and carbapenems. Recently, the co-spread of mcr-1 and bla(NDM-1) has been reported, and the emergence of dual-resistant Enterobacteriaceae severely exacerbates antimicrobial resistance. OBJECTIVES: This study aims to investigate the impact of mcr-1 and bla(NDM-1) expression on metabolism in Escherichia coli and to identify potential antimicrobial agents capable of overcoming the resistance conferred by these genes. METHODS: We employed non-targeted metabolomics to profile the metabolic perturbations of E. coli strains harboring mcr-1 and bla(NDM-1). The bactericidal effects of the differential metabolite, inosine monophosphate (IMP), were assessed both in vitro using time-killing assays and in vivo using a mouse infection model. The antimicrobial mechanism of IMP was elucidated through transcriptomic analysis and biochemical approaches. RESULTS: Metabolic profiling revealed significant alterations in the purine pathway, with IMP demonstrating potent bactericidal activity against E. coli strains carrying both resistance genes. IMP increased membrane permeability, disrupted proton motive force, reduced ATP levels, induced oxidative damage by promoting reactive oxygen species and inhibiting bacterial antioxidant defenses, and improved the survival rate of infected mice. CONCLUSION: Our findings suggest that IMP could be a promising candidate for combating mcr-1 and bla(NDM-1)-mediated resistance and provide a novel approach for discovering antimicrobial agents against colistin- and carbapenem-resistant bacteria. | 2025 | 40139526 |
| 4861 | 17 | 0.9997 | The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria. | 2021 | 33913748 |
| 4871 | 18 | 0.9997 | Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR. | 2023 | 36640846 |
| 5025 | 19 | 0.9997 | An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa. | 2022 | 35782127 |