# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2498 | 0 | 1.0000 | Emerging carbapenemases: a global perspective. The celestial rise in antibiotic resistance among Gram-negative bacteria has challenged both the scientific and pharmaceutical sectors. The hallmark of this general increase is the unbridled dissemination of carbapenem resistance genes, namely KPC, OXA and metallo-β-lactamase variants. In particular, the media attention given to the NDM-1 metallo-β-lactamase has highlighted the global consequences of human behaviour on spreading antibiotic resistance. | 2010 | 21129630 |
| 5018 | 1 | 0.9997 | Multidrug-resistant Gram-negative bacteria: a product of globalization. Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. | 2015 | 25737092 |
| 2517 | 2 | 0.9997 | The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. | 2017 | 28375512 |
| 4853 | 3 | 0.9997 | Success and Challenges Associated with Large-Scale Collaborative Surveillance for Carbapenemase Genes in Gram-Negative Bacteria. The emergence and spread of antimicrobial resistance, especially in Gram-negative bacteria, has led to significant morbidity and increased cost of health care. Large surveillance studies such as the one performed by the Antibiotic Resistance Laboratory Network are immensely valuable in understanding the scope of resistance mechanisms, especially among carbapenemase-producing Gram-negative bacteria. However, the routine laboratory detection of carbapenemases in these bacteria remains challenging and requires further optimization. | 2022 | 34930024 |
| 5028 | 4 | 0.9997 | The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups. | 2020 | 32316342 |
| 4855 | 5 | 0.9996 | Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Antibiotic resistance among gram-negative bacteria has reached critical levels. The rise of carbapenem resistance in Enterobacteriaceae carrying additional resistance genes to multiple antibiotic classes has created a generation of organisms nearly resistant to all available therapy. Carbapenem-resistant Enterobacteriaceae (CRE) infections are known to be associated with significant morbidity and mortality, and these pathogens have now made their way to the most vulnerable populations, including children. This review provides a brief overview of CRE, with a focus on CRE infections in children, and highlights available data on the epidemiology, clinical characteristics, carbapenemase types, risk factors, treatment, and outcomes of these multi-drug resistant infections in the pediatric population. | 2012 | 22700827 |
| 4854 | 6 | 0.9996 | Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Carbapenem resistance in gram-negative bacteria has caused a global epidemic that continues to grow. Although carbapenemase-producing Enterobacteriaceae have received the most attention because resistance was first reported in these pathogens in the early 1990s, there is increased awareness of the impact of carbapenem-resistant nonfermenting gram-negative bacteria, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Moreover, evaluating the problem of carbapenem resistance requires the consideration of both carbapenemase-producing bacteria as well as bacteria with other carbapenem resistance mechanisms. Advances in rapid diagnostic tests to improve the detection of carbapenem resistance and the use of large, population-based datasets to capture a greater proportion of carbapenem-resistant organisms can help us gain a better understanding of this urgent threat and enable physicians to select the most appropriate antibiotics. | 2019 | 31724045 |
| 2516 | 7 | 0.9996 | Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: resistance genes, therapeutics, and prevention - a comprehensive review. Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application. | 2024 | 38601497 |
| 2513 | 8 | 0.9996 | Prevalence and molecular epidemiology of carbapenem-resistant Gram-negative bacilli and their resistance determinants in the Eastern Mediterranean Region over the last decade. Carbapenem resistance in Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa is increasing worldwide, which has led the World Health Organization (WHO) to list these bacteria in the critical priority pathogens group. Infections by such pathogens pose a serious threat to hospitalised patients and are associated with clinical and economic consequences. What worsens the case is the weak pipeline of available antimicrobial agents to treat such infections and the absence of new drugs. The aim of this review was to shed light on all studies tackling carbapenem resistance in Enterobacteriaceae, A. baumannii and P. aeruginosa in the Eastern Mediterranean region, with indication for each country, description of studies timeline, prevalence of carbapenem resistance, and carbapenem resistance-encoding genes detected in these countries. | 2021 | 33812049 |
| 4867 | 9 | 0.9996 | Metallo Beta Lactamase Enzymes. Multidrug resistance has become more common in Gram-negative bacteria, making them one of the emerging public health problems with extremely detrimental effects on the world economy. These drugs are broad-spectrum-lactam antibiotics used as a last-resort treatment against multidrug-resistant microorganisms (MDROs). As the resistance to these last-line drugs grows, so does the need to detect and deal with MDROs that carbapenem-resistant. The group B carbapenemases, such as Imipenem metallo-lactamases (IMP) and Verona integron-encoded metallo-lactamases (VIM), are the most prevalent. Integrons, which also include various antibiotic resistance genes, contain the genes for IMP and VIM, promoting their worldwide proliferation. Many papers reported that spreading genes of these enzymes among bacteria rapidly nowadays had had a negative effect on infection control. This review can help with ensuring the understanding of carbapenem resistance as well as policies for eradications and declination of resistance mechanisms that are critical not only for therapeutic treatment but also for infection control measures and epidemic investigations and detections. This review aims to comprehend the mechanism of resistance and transmission of these elements. | 2025 | 40655350 |
| 5027 | 10 | 0.9996 | Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Antibacterial resistance is one of the 2019 World Health Organization's top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce. | 2021 | 34946136 |
| 2512 | 11 | 0.9996 | Understanding and addressing β-lactam resistance mechanisms in gram-negative bacteria in Lebanon: A scoping review. BACKGROUND: A growing threat to public health is the worldwide problem of antimicrobial resistance (AMR), in which gram-negative organisms are playing a significant role. Antibiotic abuse and misuse, together with inadequate monitoring and control protocols, have contributed to the emergence of resistant strains. This global scenario prepares us to look more closely at the situation in Lebanon. The aim of this review is to investigate in detail the resistance mechanisms and related genes that are displayed by gram-negative organisms in Lebanon. METHODS: A comprehensive analysis was carried out to pinpoint and gather information regarding gram-negative bacteria displaying resistance to antibiotics. To contribute to a complete understanding of the current state of antibiotic resistance in gram-negative strains, it was intended to collect and evaluate data on these organisms' resistance patterns in a comprehensive manner. RESULTS: Several studies have emphasized the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) in Lebanon, specifically noting Escherichia coli and Klebsiella pneumoniae as the most frequent culprits, with OXA-48 and NDM-1 being the primary carbapenemases discovered. Furthermore, the TEM β-lactamase families are the primary source of extended-spectrum β-lactamases (ESBLs) in Shigella and Salmonella. Additionally, resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa have been linked to nosocomial infections in the country. CONCLUSION: There is a considerable frequency of antibiotic overuse and misuse in Lebanon, based to the limited data available on antibiotic consumption. In conclusion, antibiotic stewardship initiatives and additional research beyond the confines of single-center studies in Lebanon are needed. | 2025 | 39981361 |
| 4868 | 12 | 0.9996 | Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect. | 2013 | 22667455 |
| 4872 | 13 | 0.9996 | A Review on Colistin Resistance: An Antibiotic of Last Resort. Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics. | 2024 | 38674716 |
| 4863 | 14 | 0.9996 | Carbapenem Resistance in Gram-Negative Bacteria: The Not-So-Little Problem in the Little Red Dot. Singapore is an international travel and medical hub and faces a genuine threat for import and dissemination of bacteria with broad-spectrum resistance. In this review, we described the current landscape and management of carbapenem resistance in Gram-negative bacteria (GNB) in Singapore. Notably, the number of carbapenem-resistant Enterobacteriaceae has exponentially increased in the past two years. Resistance is largely mediated by a variety of mechanisms. Polymyxin resistance has also emerged. Interestingly, two Escherichia coli isolates with plasmid-mediated mcr-1 genes have been detected. Evidently, surveillance and infection control becomes critical in the local setting where resistance is commonly related to plasmid-mediated mechanisms, such as carbapenemases. Combination antibiotic therapy has been proposed as a last-resort strategy in the treatment of extensively drug-resistant (XDR) GNB infections, and is widely adopted in Singapore. The diversity of carbapenemases encountered, however, presents complexities in both carbapenemase detection and the selection of optimal antibiotic combinations. One unique strategy introduced in Singapore is a prospective in vitro combination testing service, which aids physicians in the selection of individualized combinations. The outcome of this treatment strategy has been promising. Unlike countries with a predominant carbapenemase type, Singapore has to adopt management strategies which accounts for diversity in resistance mechanisms. | 2016 | 27681907 |
| 5020 | 15 | 0.9996 | Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Emerging β-lactamase-producing-bacteria (ESBL, AmpC and carbapenemases) have become a serious problem in our community due to their startling spread worldwide and their ability to cause infections which are difficult to treat. Diagnosis of these β-lactamases is of clinical and epidemiological interest. Over the past 10 years, several methods have been developed aiming to rapidly detect these emerging enzymes, thus preventing their rapid spread. In this review, we describe the range of screening and detection methods (phenotypic, molecular and other) for detecting these β-lactamases but also whole genome sequencing as a tool for detecting the genes encoding these enzymes. | 2015 | 26162631 |
| 4850 | 16 | 0.9996 | Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings. | 2023 | 37175597 |
| 4844 | 17 | 0.9996 | Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Antibiotic-resistant bacteria are considered one of the major global threats to human and animal health. The most harmful among the resistant bacteria are β-lactamase producing Gram-negative species (β-lactamases). β-lactamases constitute a paradigm shift in the evolution of antibiotic resistance. Therefore, it is imperative to present a comprehensive review of the mechanisms responsible for developing antimicrobial resistance. Resistance due to β-lactamases develops through a variety of mechanisms, and the number of resistant genes are involved that can be transferred between bacteria, mostly via plasmids. Over time, these new molecular-based resistance mechanisms have been progressively disclosed. The present review article provides information on the recent findings regarding the molecular mechanisms of resistance to β-lactams in Gram-negative bacteria, including CTX-M-type ESBLs with methylase activity, plasmids harbouring phages with β-lactam resistance genes, the co-presence of β-lactam resistant genes of unique combinations and the presence of β-lactam and non-β-lactam antibiotic-resistant genes in the same bacteria. Keeping in view, the molecular level resistance development, multifactorial and coordinated measures may be taken to counter the challenge of rapidly increasing β-lactam resistance. | 2021 | 34119627 |
| 5017 | 18 | 0.9996 | Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia. Antimicrobial resistance is a major health problem worldwide, but marked variations in the resistance profiles of bacterial pathogens are found between countries and in different patient settings. In Tunisia, the strikingly high prevalence of resistance of bacteria to penicillins and cephalorosporins drugs including fourth generation in clinical isolates of Gram negative bacteria has been reported. During 30 years, the emerging problem of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates is substantial, and some unique enzymes have been found. Recently, evidence that Gram-negative bacteria are resistant to nearly all available antimicrobial agents, including carbapenems, have emerged. | 2011 | 21438848 |
| 5021 | 19 | 0.9996 | Beta-lactamases in Enterobacteriaceae infections in children. Multi-drug resistance in Gram negative bacteria, particularly in Enterobacteriaceae, is a major clinical and public health challenge. The main mechanism of resistance in Enterobacteriaceae is linked to the production of beta-lactamase hydrolysing enzymes such as extended spectrum beta-lactamases (ESBL), AmpC beta-lactamases and carbapenemases (Carbapenemase Producing Enterobacteriaceae (CPE)). ESBL and CPE resistance genes are located on plasmids, which can be transmitted between Enterobacteriaceae, facilitating their spread in hospitals and communities. These plasmids usually harbour multiple additional co-resistance genes, including to trimethoprim-sulfamethoxazole, aminoglycosides, and fluoroquinolones, making these infections challenging to treat. Asymptomatic carriage in healthy children as well as community acquired infections are increasingly reported, particularly with ESBL. Therapeutic options are limited and previously little used antimicrobials such as fosfomycin and colistin have been re-introduced in clinical practice. Paediatric experience with these agents is limited hence there is a need to further examine their clinical efficacy, dosage and toxicity in children. Antimicrobial stewardship along with strict infection prevention and control practices need to be adopted widely in order to preserve currently available antimicrobials. The future development of novel agents effective against beta-lactamases producers and their applicability in children is urgently needed to address the challenge of multi-resistant Gram negative infections. | 2016 | 27180312 |