# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2480 | 0 | 1.0000 | GLO1 Contributes to the Drug Resistance of Escherichia coli Through Inducing PER Type of Extended-Spectrum β-Lactamases. BACKGROUND: Escherichia coli-associated antimicrobial resistance (AMR) issue so far needs urgent considerations. This study aims to screen the potent genes associated with extended-spectrum β-lactamases (ESBLs) in drug-resistant Escherichia coli and elucidate the specific drug-resistant mechanism. METHODS: Clinical ESBLs-EC samples were obtained based on the microbial identification, and the whole genome was sequenced. In combination with the significantly enriched pathways, several differently expressed genes were screened and verified by RT-PCR. Furthermore, through knocking out glyoxalase 1 (GLO1) gene and transfecting overexpressed plasmids, the potential relationship between GLO1 and ESBLs was then investigated. Lastly, the concentrations of β-lactamases in bacteria and supernatant from different groups were examined by enzyme-linked immunosorbent assay (ELISA). RESULTS: After successful isolation and identification of ESBLs-EC, the whole genome and eighteen differential metabolic pathways were analyzed to select differently expressed genes, including add, deoD, guaD, speG, GLO1, VNN1, etc. RT-PCR results showed that there were no differences in these genes between the standard bacteria and susceptible Escherichia coli. Remarkably, the relative levels of four genes including speG, Hdac10, GLO1 and Ppcdc were significantly increased in ESBLs-EC in comparison with susceptible strains, whereas other gene expression was decreased. Further experiments utilizing gene knockout and overexpression strains confirmed the role of GLO1. At last, a total of 10 subtypes of β-lactamases were studied using ELISA, including BES-, CTX-M1-, CTX-M2-, OXA1-, OXA2-, OXA10-, PER-, SHV-, TEM-, and VEB-ESBLs, and results demonstrated that GLO1 gene expression only affected PER-β-lactamases but had no effects on other β-lactamases. CONCLUSION: SpeG, Hdac10, GLO1 and Ppcdc might be associated with the drug-resistant mechanism of Escherichia coli. Of note, this study firstly addressed the role of GLO1 in the drug resistance of ESBLs-EC, and this effect may be mediated by increasing PER-β-lactamases. | 2022 | 35414749 |
| 1715 | 1 | 0.9988 | Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Beta (β)-lactamases are the most important agents that confer drug resistance among gram-negative bacteria. Continuous mutations in β-lactamases make them remarkably diverse. We carried out the transcriptome analysis of 10 β-lactamase genes of Extended-Spectrum β-lactamases (ESBL), Metallo β-lactamases (MBL), and AmpC β-lactamases (ABL) in drug-resistant and sensitive diarrheagenic E. coli (DEC) isolates obtained from children up to 5 years of age. Out of the 10 β-lactamase genes, four belonged to ESBL (TEM, SHV, CTX, and OXA); three to MBL (NDM-1, IMP, and VIM); and three to ABL (ACT, DHA and CMY) class of genes. The different categories of DEC were estimated for β-lactamases production using a set of conventional phenotypic tests, followed by detection of their messenger RNA (mRNA) expression. The study revealed a direct correlation between mRNA expression of these genes and the presence of antibiotic resistance; also corroborated by mutation analysis of the AmpC promoter region. All the 10 β-lactamase genes showed a significant increase in their expression levels in resistant isolates, compared to those of the sensitive isolates, indicating their possible role in the disease pathogenesis. Increase in mRNA expression of β-lactamase genes, and thereby virulence, may be due to multifactorial parameters causing phenotypic as well as genotypic changes. Our study highlights the necessity of instantaneous detection of β-lactamase gene expression to curb the overwhelming threat posed by emergence of drug resistance amongst the commensal E. coli strains in children from developing countries for larger public health interest. | 2019 | 30842518 |
| 5772 | 2 | 0.9988 | Molecular evaluation of colistin-resistant gene expression changes in Acinetobacter baumannii with real-time polymerase chain reaction. BACKGROUND: Acinetobacter baumannii is an important human pathogen which has recently gained increased attention due to the occurrence of drug-resistant nosocomial infections in patients suffering from immune system disorders, and those in hospital intensive care units. The aim of this research was to identify and isolate A. baumannii strains resistant to colistin, determine antibiotic resistance pattern of this bacteria, investigate the presence of colistin-resistant genes, and finally assess the effect of expression changes in pmrA and pmrB genes resistant to A. baumannii against colistin via real-time polymerase chain reaction. METHODS: The samples were initially purified and isolated using biochemical tests and Micro-gen kit. Later, the resistance pattern evaluation of validated samples to different antibiotics and colistin was carried out using two methods viz., disc diffusion and E-test. This was followed by the assessment of genes resistant to colistin via polymerase chain reaction besides gene expression changes via real-time polymerase chain reaction. RESULTS: The results of this study indicated that eleven strains of A. baumannii isolated from Shahid Rajaee Trauma Hospital were resistant to colistin. However, in the resistance pattern evaluation of A. baumannii isolated from Ali Asghar Hospital, all the strains were sensitive to colistin. In the evaluation of genes resistant to pmrA and pmrB, most of the strains resistant to colistin were carriers of these genes. Besides, in the expression assessment of these genes, it was demonstrated that expression of pmrA in the strains resistant to colistin significantly increased in relation to sensitive strains, but the expression of pmrB increased at a lower rate in the strains resistant to colistin as compared to the sensitive strains. CONCLUSION: Thus, it can be safely mentioned that increased expression of pmrA was due to the resistance of A. baumannii to colistin. | 2017 | 29225477 |
| 1576 | 3 | 0.9988 | Emergence of multidrug-resistant Gram-negative bacteria during selective decontamination of the digestive tract on an intensive care unit. OBJECTIVES: During treatment with selective decontamination of the digestive tract (SDD), four multidrug-resistant (MDR) strains, three different Escherichia coli and one Klebsiella pneumoniae, were isolated from four patients not known as carriers of such MDR strains before their admission to the intensive care unit (ICU) in the Academic Medical Center (AMC) in Amsterdam. These isolates were extended-spectrum beta-lactamase (ESBL)-positive. We investigated whether this was due to interspecies transfer of resistance genes. METHODS: The MDR strains were typed by amplified fragment length polymorphism (AFLP) analysis. The plasmids from these strains were characterized by restriction fragment length polymorphism and the resistance genes were characterized by PCR and sequence analysis. RESULTS: The strains were genetically unrelated and contained identical plasmids with ESBL genes. CONCLUSIONS: We identified an outbreak of plasmid-mediated ESBL genes during SDD treatment in the ICU. The use of third-generation cephalosporins in SDD is associated with the emergence of ESBLs. We conclude that identification of emerging MDR Gram-negative bacteria and recognition of resistance plasmid transfer during SDD treatment are crucial for optimal application of this regimen in ICUs. | 2006 | 16891326 |
| 2240 | 4 | 0.9988 | Evaluation of multiplex tandem PCR (MT-PCR) assays for the detection of bacterial resistance genes among Enterobacteriaceae in clinical urines. BACKGROUND: Increasing resistance drives empirical use of less potent and previously reserved antibiotics, including for urinary tract infections (UTIs). Molecular profiling, without culture, might better guide early therapy. OBJECTIVES: To explore the potential of AusDiagnostics multiplex tandem (MT) PCR UTI assays. METHODS: Two MT-PCR assays were developed successively, seeking 8 or 16 resistance genes. Amplification was tracked in real time, with melting temperatures used to confirm product identity. Assays were variously performed on: (i) extracted DNA; (ii) cultured bacteria; (iii) urine spiked with reference strains; and (iv) bacteria harvested from clinical urines. Results were compared with those from sequencing, real-time SybrGreen PCR or phenotypic susceptibility. RESULTS: Performance was similar irrespective of whether DNA, cultures or urines were used, with >90% sensitivity and specificity with respect to common β-lactamases, dfr genes and aminoglycoside resistance determinants except aadA1/A2/A3, for which carriage correlated poorly with streptomycin resistance. Fluoroquinolone-susceptible and -resistant Escherichia coli (but not other species) were distinguished by the melting temperatures of their gyrA PCR products. The time from urine to results was <3 h. CONCLUSIONS: The MT-PCR assays rapidly identified resistance genes from Gram-negative bacteria in urines as well as from cultivated bacteria. Used directly on urines, this assay has the potential to guide early therapy. | 2019 | 30476137 |
| 1684 | 5 | 0.9988 | Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. INTRODUCTION: The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. METHODS: Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). RESULTS: In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). CONCLUSION: ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids. | 2024 | 38469349 |
| 5041 | 6 | 0.9988 | Development and Validation of a Clinical Laboratory Improvement Amendments-Compliant Multiplex Real-Time PCR Assay for Detection of mcr Genes. Increased use of colistin in both human and veterinary medicine has led to the emergence of plasmid-mediated colistin resistance (mcr genes). In this study, we report the development of a real-time PCR assay using TaqMan probe-based chemistry for detection of mcr genes from bacterial isolates. Positive control isolates harboring mcr-1 and mcr-2 yielded exponential amplification curves with the assay, and the amplification efficiency was 98% and 96% for mcr-1 and mcr-2, respectively. Each target gene could be reproducibly detected from a sample containing 10(3) cfu/mL of mcr-harboring bacteria, and there was no cross-reactivity with DNA extracted from several multidrug-resistant bacteria harboring other resistance genes, but lacking mcr genes. Both sensitivity and specificity of the mcr real-time PCR assay were 100% in a method validation performed with a set of 25 previously well-characterized bacterial isolates containing mcr-positive and -negative bacteria. This newly developed assay is a rapid and sensitive tool for detecting emerging mcr genes in cultured bacterial isolates. The assay was successfully validated according to quality standards of the Clinical Laboratory Improvement Amendments (CLIA). | 2019 | 30942652 |
| 1760 | 7 | 0.9988 | Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with blaNDM-1, blaL1 and blaL2 β-lactamase genes under imipenem treatment. The co-occurrence of L1 and AmpR-L2 with bla(NDM-1) gene with an upstream 250-bp promoter was detected in a clinical isolate of Stenotrophomonas maltophilia DCPS-01, which was resistant to all β-lactams and sensitive only to colistin and fluoroquinolones. To investigate expression of resistance genes and the molecular mechanisms of bacteria resistance to carbapenems, proteomic profiles of the isolate was passaged with and without the drug by using 2D-PAGE. The results showed that 33 genes exhibiting a ≥3-fold change were identified as candidates that may help S. maltophilia survive drug selection. Strikingly, L1 was expressed more highly in cells grown with imipenem, and the abundant NDM-1 further increased, while very little L2 was detected even following induction. Specific activities for β-lactamase revealed that L2 remained at constitutive low levels (10.6 U/mg), while L1 and NDM-1 showed clear activity (69.8 U/mg). Our data support that imipenem could specifically and reversibly induce L1 and NDM-1, which together played key roles in drug resistance in DCPS-01. Although NDM-1 mediated resistance to carbapenems has been found in very few cases, to our knowledge, this is the first proteomics research of S. maltophilia with NDM-1, giving very broad-spectrum antibiotic resistance profiles. | 2012 | 22702735 |
| 1672 | 8 | 0.9988 | Colonization of extended-spectrum beta-lactamase-producing bacteria in healthy pregnant women and its impact on perinatal care: A cross-sectional study. BackgroundColonization of extended-spectrum beta-lactamase (ESBL)-producing organisms is increasing becoming more frequent not only in hospitalized patients but also in healthy individuals. Although these bacteria are thought to be transmitted to newborns on their way through the birth canal, molecular evidence for this is scarce. In this study, we aimed to survey the current prevalence of resistant bacterial colonization in this area by examining the colonization carriage of this organism before and after delivery.MethodsWe examined the colonization rate of ESBL-producing bacteria in healthy pregnant women, the colonization rate in newborns, and the transmission rate from pregnant women who are carriers of the bacteria to their newborns. We also performed resistance gene and similarity analyses for each strain in pairs of mother-child carriers.ResultsOf 494 pregnant women, 33 carried ESBL-producing bacteria, all of whom were identified as Escherichia coli. The colonization carriage rate among pregnant women was 6.7%. Among newborns, the rate rose from 1.0% immediately after birth to 6.9% at the one-month checkup. Furthermore, of the 13 strains detected among mothers and children, 10 pairs had matching resistance genes.ConclusionsSome ESBL-producing bacterial carriers exist even among healthy pregnant women, and about half of them go on to infect their newborns. However, routes of transmission beyond vertical transmission cannot be ruled out. Therefore, it is important to promote infection control in the healthcare environment and in the families of newborns, as well as antimicrobial stewardship among pregnant women. | 2025 | 40152933 |
| 5696 | 9 | 0.9988 | Co-introduction of plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), increases fitness and virulence of bacterial host. BACKGROUND: Bacterial isolates with multiple plasmids harbouring different carbapenemase genes have emerged and been identified repeatedly, despite a general notion that plasmids confer fitness cost in bacterial host. In this study, we investigated the effects of plasmids with carbapenemase genes on the fitness and virulence of bacteria. METHODS: Different plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), were isolated from a carbapenem-resistant K. pneumoniae strain. Each plasmid was conjugated into the Escherichia coli strain DH5α, and a transconjugant with both plasmids was also obtained by transformation. Their in vitro competitive ability, biofilm formation, serum resistance, survival ability within macrophage and fruit fly, and fly killing ability were evaluated. RESULTS: The transconjugants with a single plasmid showed identical phenotypes to the plasmid-free strain, except that they decreased fly survival after infection. However, significantly increased fitness, virulence and biofilm production were observed consistently for the transconjugant with both plasmids, harbouring bla(NDM-1) and bla(OXA-232). CONCLUSIONS: Our data indicate that bacteria carrying multiple plasmids encoding different carbapenemases may have increased fitness and virulence, emphasizing the need for diverse strategies to combat antimicrobial resistance. | 2020 | 31900177 |
| 2072 | 10 | 0.9987 | Interplay between IncF plasmids and topoisomerase mutations conferring quinolone resistance in the Escherichia coli ST131 clone: stability and resistance evolution. The Escherichia coli ST131 H30-Rx subclone vehicles CTX-M-15 plasmids and mutations in gyrA and parC conferring multidrug resistance successfully in the clinical setting. The aim of this study was (1) to investigate the relationship of specific topoisomerase mutations on the stability of IncF (CTX-M producing) plasmids using isogenic E. coli mutants and (2) to investigate the impact of the IncF-type plasmids present in the E. coli clone ST131 on the evolution of quinolone resistance. E. coli ATCC 25922 (background strain) and derived mutants encoding specific QRDR substitutions were used. Also, NGS-characterized IncFIA and IncFIB plasmids (encoding CTX-M genes) were included. Plasmid stability was evaluated by sequential dilutions into Luria broth medium without antibiotics for 7 days. Mutant frequency to ciprofloxacin was also evaluated. Moderate differences in the IncF plasmids stability were observed among E. coli ATCC 25922 and isogenic mutants. Under our experimental conditions, the fluctuation of bacteria harboring plasmids was less than 0.5-log((10)) in all cases. In the mutant frequency tests, it was observed that the presence of these IncF plasmids increased this value significantly (10-1000-fold). Quinolone resistance substitutions in gyrA or parC genes, frequently found associated with E. coli clone ST131, do not modify the stability of ST131-associated IncFIA and IncFIB plasmids under in vitro conditions. IncF-type plasmids present in E. coli clone ST131 facilitate the selection of resistance to quinolones. These results are consistent with the clinical scenario in which the combination of resistance to quinolones and beta-lactams is highly frequent in the E. coli clone ST131. | 2021 | 34787748 |
| 5509 | 11 | 0.9987 | Exploring Virulence Characteristics of Clinical Escherichia coli Isolates from Greece. The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String production, biofilm formation and serum resistance were examined for all isolates. Twenty E. coli isolates were completely sequenced Illumina platform. The results showed that the majority of E. coli isolates (87%) produced significant levels of biofilm, while none of the isolates were positive for string test and resistance to serum. Additionally, the presence of CRISPR/Cas systems (type I-E or I-F) was found in 18% of the isolates. Analysis of WGS data found that all sequenced isolates harbored a variety of virulence genes that could be implicated in adherence, invasion, iron uptake. Also, WGS data confirmed the presence of a wide variety of resistance genes, including ESBL- and carbapenemase-encoding genes. In conclusion, an important percentage (87%) of the E. coli isolates had a significant ability to form biofilm. Biofilms, due to their heterogeneous nature and ability to make microorganisms tolerant to multiple antimicrobials, complicate treatment strategies. Thus, in combination with the presence of multidrug resistance, expression of virulence factors could challenge antimicrobial therapy of infections caused by such bacteria. | 2025 | 40731998 |
| 1699 | 12 | 0.9987 | Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BACKGROUND: This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS: 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS: ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS: If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system. | 2024 | 39375619 |
| 2331 | 13 | 0.9987 | Bacteriological and molecular study of fosfomycin resistance in uropathogenic Escherichia coli. The identification of genes associated with resistance has the potential to facilitate the development of novel diagnostic tests and treatment methods. The objective of this study was to examine the antibiotic resistance and Fosfomycin resistance genes in uropathogenic Escherichia coli (UPEC) in patients in Baghdad, Iraq. After analyzing 250 urine samples using various identification methods, including the examination of morphological characteristics, biochemical tests, and genetic detection, it was determined that E. coli was the most common bacteria present, accounting for 63.6% of the samples. Antibiotic susceptibility testing showed a significant prevalence of resistance to various antibiotics, with 99.3% of E. coli isolates exhibiting multiple drug resistance (MDR). Fosfomycin showed antibacterial properties against UPEC. The minimum inhibitory concentration (MIC) ranged from 512 to 1024 μg/mL, while the minimum bactericidal concentration (MBC) was 2048 μg/mL. In the time-kill assay, fosfomycin was effective against fosfomycin-resistant isolates within 8-12 h. The genetic determinants associated with fosfomycin resistance were examined through the utilization of polymerase chain reaction (PCR). The findings indicated that the genes murA, glpT, and cyaA were detected in all the isolates when genomic DNA was used as a template. However, all the tests yielded negative results when plasmid was used as a template. The genes fosA3 and fosA4 were detected in 8.6% and 5% of the isolates when genomic DNA was used as a template. When plasmid was used as a template, the genes fosA3 and fosA4 were found in 5.7% and 2.9% of the isolates, respectively. In conclusion, there is an increasing problem with antibiotic resistance in UPEC, with elevated rates of resistance to several antibiotics. The study also offers novel insights into the genetic foundation of fosfomycin resistance in UPEC. | 2024 | 38367167 |
| 2228 | 14 | 0.9987 | Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis. | 2019 | 31849899 |
| 2244 | 15 | 0.9987 | Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. OBJECTIVE: To investigate the clinical features and outcomes of patients with mechanical ventilation-associated pneumonia (VAP) caused by Acinetobacter baumannii (Ab), and to characterize the drug resistance of pathogenic strains and carbapenem resistance-associated genes. METHODS: Clinical data were collected from the PICU of Shengjing Hospital. Patients who met the diagnostic criteria of VAP and for whom Ab was a pathogen were selected as study participants. The patients were divided into carbapenem-resistant A. baumannii (CRAB) and carbapenem-sensitive A. baumannii (CSAB) groups. The genes closely associated with Ab resistance to carbapenems and the efflux pump-related genes were detected by real-time polymerase chain reaction, and results compared between the two groups. RESULTS: The total mechanical ventilation time and the administration time of antibiotics after a diagnosis of Ab infection were significantly higher in the CRAB group. And the CRAB group strains were only sensitive to amikacin, cephazolin, compound sulfamethoxazole, and tigecycline. Genetic test results indicated that IPM expression was not significantly different between two groups. The OXA-51 and OXA-23 in the CRAB group was markedly higher than that in the CSAB group, while OXA-24 expression was markedly lower. The expression of AdeABC and AdeFGH was significantly greater in the CRAB compared to CSAB group. CONCLUSION: In pediatric patients with VAP caused by Ab infection, the detection rate of CRAB strains is far higher than that of CSAB strains; The abnormal expression of β-lactamase-producing genes (OXA-23, OXA-24, and OXA-51) and efflux pump-related genes (AdeABC and AdeFGH) is closely related to the production of CRAB. | 2021 | 34526127 |
| 5668 | 16 | 0.9987 | The co-selection of fluoroquinolone resistance genes in the gut flora of Vietnamese children. Antimicrobial consumption is one of the major contributing factors facilitating the development and maintenance of bacteria exhibiting antimicrobial resistance. Plasmid-mediated quinolone resistance (PMQR) genes, such as the qnr family, can be horizontally transferred and contribute to reduced susceptibility to fluoroquinolones. We performed an observational study, investigating the copy number of PMQR after antimicrobial therapy. We enrolled 300 children resident in Ho Chi Minh City receiving antimicrobial therapy for acute respiratory tract infections (ARIs). Rectal swabs were taken on enrollment and seven days subsequently, counts for Enterobacteriaceae were performed and qnrA, qnrB and qnrS were quantified by using real-time PCR on metagenomic stool DNA. On enrollment, we found no association between age, gender or location of the participants and the prevalence of qnrA, qnrB or qnrS. Yet, all three loci demonstrated a proportional increase in the number of samples testing positive between day 0 and day 7. Furthermore, qnrB demonstrated a significant increase in copy number between paired samples (p<0.001; Wilcoxon rank-sum), associated with non-fluoroquinolone combination antimicrobial therapy. To our knowledge, this is the first study describing an association between the use of non-fluoroquinolone antimicrobials and the increasing relative prevalence and quantity of qnr genes. Our work outlines a potential mechanism for the selection and maintenance of PMQR genes and predicts a strong effect of co-selection of these resistance determinants through the use of unrelated and potentially unnecessary antimicrobial regimes. | 2012 | 22937000 |
| 5088 | 17 | 0.9987 | A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 10(2) cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry. | 2017 | 29163387 |
| 1582 | 18 | 0.9987 | Integrated Genomic and Phenotypic Characterization of an Mcr-10.1-Harboring Multidrug Resistant Escherichia coli Strain From Migratory Birds in China. Background: The global rise in antibiotic resistance among multidrug resistant (MDR) Gram-negative (GN) bacteria has posed significant health challenges, leading to the resurgence of colistin as a key defense against these bacteria. However, the widespread use of colistin has resulted in the rapid emergence of colistin resistance on a global scale. Ten members of the (mobile colistin resistance) mcr gene family, mcr-1 through mcr-10, have been reported and documented. Currently, bacteria reported to carry the mcr-10.1 gene are sensitive to colistin, but the mechanism underlying the low-level resistance phenomenon mediated by mcr-10.1 remains unclear. Methods: In this study, antimicrobial susceptibility testing (AST) was conducted on Escherichia coli (E.coli) isolated from Chinese migratory birds, resulting in the selection of 87 strains exhibiting MDR phenotypes. Whole-genome sequencing (draft) was performed on these 87 MDR E. coli strains, and for one of the E. coli strains carrying the mcr-10.1 gene, whole-genome sequencing, phenotypic characterization, AST and conjugation experiments were conducted to identify its resistance phenotypes and genetic characteristics. Results: Whole-genome sequencing (draft) of 87 MDR E. coli isolates revealed a diverse array of resistance genes, predominantly including aminoglycoside, β-lactam, tetracycline, and sulfonamide resistance genes. Remarkably, one isolate, despite being sensitive to colistin, harbored the mcr-10.1 gene. Further sequencing showed that mcr-10.1 was located in the conserved region of xerC-mcr-10.1, a hotspot for movable elements with various insertion sequences (ISs) or transposons nearby. Phenotypic characterization indicated that the MDR plasmid pGN25-mcr10.1 had no significant effect on the growth of GN25 and its derivatives but reduced the number of bacterial flagella. Conclusions: It is particularly important to note that bacteria harboring the mcr-10.1 gene may exhibit low minimum inhibitory concentration (MIC) values, but that the MIC values under colistin selective pressure can become progressively higher and exacerbate the difficulty of treating infections caused by mcr-10.1-associated bacteria. Therefore, vigilance for such "silent transmission" is warranted, and continuous monitoring of the spread of mcr-10.1 is necessary in the future. | 2025 | 40343190 |
| 1690 | 19 | 0.9987 | High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. BACKGROUND: Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. AIM: To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. METHODS: Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. FINDINGS: Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. CONCLUSION: Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. | 2017 | 28506673 |