A Novel and Quantitative Detection Assay (effluxR) for Identifying Efflux-Associated Resistance Genes Using Multiplex Digital PCR in Clinical Isolates of Pseudomonas aeruginosa. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
247601.0000A Novel and Quantitative Detection Assay (effluxR) for Identifying Efflux-Associated Resistance Genes Using Multiplex Digital PCR in Clinical Isolates of Pseudomonas aeruginosa. The rise of multidrug resistance of Pseudomonas aeruginosa highlights an increased need for selective and precise antimicrobial treatment. Drug efflux pumps are one of the major mechanisms of antimicrobial resistance found in many bacteria, including P. aeruginosa. Detection of efflux genes using a polymerase chain reaction (PCR)-based system would enable resistance detection and aid clinical decision making. Therefore, we aimed to develop and optimize a novel method herein referred to as "effluxR detection assay" using multiplex digital PCR (mdPCR) for detection of mex efflux pump genes in P. aeruginosa strains. The annealing/extension temperatures and gDNA concentrations were optimized to amplify mexB, mexD, and mexY using the multiplex quantitative PCR (mqPCR) system. We established the optimal mqPCR conditions for the assay (Ta of 59 °C with gDNA concentrations at or above 0.5 ng/µL). Using these conditions, we were able to successfully detect the presence of these genes in a quantity-dependent manner. The limit of detection for mex genes using the effluxR detection assay with mdPCR was 0.001 ng/µL (7.04-34.81 copies/µL). Moreover, using blind sample testing, we show that effluxR detection assay had 100% sensitivity and specificity for detecting mex genes in P. aeruginosa. In conclusion, the effluxR detection assay, using mdPCR, is able to identify the presence of multiple mex genes in P. aeruginosa that may aid clinical laboratory decisions and further epidemiological studies.202337888028
584010.9992Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h.200919656662
565520.9992Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. BACKGROUND: The prevalence of disinfectant resistance in Pseudomonas aeruginosa is on the rise. P. aeruginosa is the most common bacteria isolated from cases of microbial keratitis. Many multi-purpose contact lens disinfectant solutions are available to decontaminate contact lenses before use and to help reduce the incidence of infections. However, with increasing disinfectant resistance, the effect of multi-purpose disinfectant solutions may diminish. The goal of this study was to examine genes associated with disinfectant resistance in ocular isolates of P. aeruginosa and understand the strain's susceptibility to different multipurpose disinfectant solutions. METHODS: Seven potential disinfectant resistance genes were used in BLASTn searches against the whole genomes of 13 eye isolates of P. aeruginosa. A microdilution broth method was used to examine susceptibility to four different multipurpose disinfectant solutions. RESULTS: All strains possessed the sugE2, sugE3 and emrE (qacE) genes. The sugE1 and qacEdelta1 genes were present in 6/13 isolates. No strains contained the qacF or qacG genes. All tested disinfectant solutions had the ability to kill all test strains at 100% concentration, with some strains being susceptible at 1:8 dilutions of the disinfecting solutions. However, the presence of disinfectant resistance genes was not associated with susceptibility to multi-purpose disinfectants. CONCLUSION: All four tested contact lens disinfectant preparations are effective against P. aeruginosa isolates regardless of the presence of disinfectant resistance genes.201830326554
229730.9992Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. Acinetobacter baumannii (A. baumannii) has developed several resistance mechanisms. The bacteria have been reported as origin of multiple outbreaks. This study aims to investigate the use of efflux pumps and quinolone resistance-associated genotypic mutations as mechanisms of resistance in A. baumannii isolates at a tertiary hospital. A total number of 103 A. baumannii isolates were investigated after identification and antimicrobial susceptibility testing by VITEK2 followed by PCR amplification of bla (OXA-51) . Conventional PCR amplification of the AdeABC efflux pump (adeB, adeS, and adeR) and quinolone (parC and gyrA) resistance genes were performed, followed by quantitative real-time PCR of AdeABC efflux pump genes. Phenotypic evaluation of efflux pump expression was performed by determining the difference between the MIC of tigecycline before and after exposure to an efflux pump inhibitor. The Sanger sequencing method was used to sequence the parC and gyrA amplicons. A phylogenetic tree was drawn using MEGA 4.0 to evaluate evolutionary relatedness of the strains. All the collected isolates were bla (OXA-51) -positive. High resistance to almost all the tested antibiotics was observed. Efflux pump was found in 75% of isolates as a mechanism of resistance. The study detected parC gene mutation in 60% and gyrA gene mutation in 85%, while 37% of isolates had mutations on both genes. A minimal evolutionary distance between the isolates was reported. The use of the AdeABC efflux pump system as an active mechanism of resistance combined with point mutation mainly in gyrA was shown to contribute to broaden the resistance spectrum of A. baumannii isolates.202134659419
582140.9992Direct prediction of antimicrobial resistance in Pseudomonas aeruginosa by metagenomic next-generation sequencing. OBJECTIVE: Pseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment. METHODS: In the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model. RESULTS: We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance. CONCLUSION: In summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria.202438903781
576350.9992Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa. Fluoroquinolone resistance in Pseudomonas aeruginosa typically arises through site-specific mutations and overexpression of efflux pumps. In this study, we investigated the dynamics of different resistance mechanisms in P. aeruginosa populations that have evolved under fluoroquinolone pressure, as well as the interactions between these mechanisms in evolutionary trajectories. Bacteria of strain ATCC27853 were selected under different concentrations of ciprofloxacin and levofloxacin for six parallel lineages, followed by amplification of four target genes in the quinolone-resistance determining region (QRDR) and Sanger sequencing to identify the mutations. The expression of four efflux pump proteins was evaluated by real-time polymerase chain reaction using the relative quantitation method, with the ATCC27853 strain used as a control. We found that ciprofloxacin killed P. aeruginosa sooner than did levofloxacin. Further, we identified five different mutations in three subunits of QRDRs, with gyrA as the main mutated gene associated with conferring fluoroquinolone resistance. Additionally, we found a larger number of mutations appearing at 2 mg/L and 4 mg/L of ciprofloxacin and levofloxacin, respectively. Moreover, we identified the main efflux pump being expressed as MexCD-OprJ, with initial overexpression observed at 0.25 mg/L and 0.5 mg/L of ciprofloxacin and levofloxacin, respectively. These results demonstrated gyrA(83) mutation and MexCD-OprJ overexpression as the primary mechanism conferring ciprofloxacin and levofloxacin resistance in P. aeruginosa. In addition, we also show that ciprofloxacin exhibited a stronger ability to kill the bacteria while potentially rendering it more susceptible to resistance.202032758289
577960.9992Development of a One-Step Multiplex qPCR Assay for Detection of Methicillin and Vancomycin Drug Resistance Genes in Antibiotic-Resistant Bacteria. The most common antibiotic-resistant bacteria in Korea are methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Pathogen identification in clinical laboratories can be divided into traditional phenotype- and genotype-based methods, both of which are complementary to each other. The genotype-based method using multiplex real-time polymerase chain reaction (PCR) is a rapid and accurate technique that analyzes material at the genetic level by targeting genes simultaneously. Accordingly, we aimed to develop a rapid method for studying the genetic characteristics of antibiotic-resistant bacteria and to provide an experimental guide for the efficient antibiotic resistance gene analysis of mecA detection for MRSA and vanA or vanB detection for VRE using a one-step multiplex qPCR assay at an early stage of infection. As a result, the sensitivity and specificity of the mecA gene for clinical S. aureus isolates, including MRSA and methicillin-susceptible S. aureus, were 97.44% (95% CI, 86.82-99.87%) and 96.15% (95% CI, 87.02-99.32%), respectively. The receiver operating characteristic area under the curve for the diagnosis of MRSA was 0.9798 (*** p < 0.0001). Therefore, the molecular diagnostic method using this newly developed one-step multiplex qPCR assay can provide accurate and rapid results for the treatment of patients with MRSA and VRE infections.202439452724
576870.9991The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. BACKGROUND: Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE: To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS: Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS: After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION: These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection.201931571941
569480.9991Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.201626489938
227890.9991First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Introduction. Carbapenems are often described as the most effective weapon against infections caused by multidrug-resistant bacteria especially those belonging to the group of non-fermenting bacteria such as Pseudomonas. The main mechanisms leading to resistance are the hyperexpression of certain efflux pumps belonging to the resisto-nodular division and the lower expression of the transmembrane porin OprD, sometimes in combination with excessive production of the intrinsic AmpC. Carbapenemases are assumed to play a secondary role.Aim. The aim of this study was to determine the exact mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from the largest Bulgarian University hospital 'St. George'- Plovdiv.Methodology. A total of 32 clinical isolates collected from different patients' samples resistant to imipenem and/or meropenem were examined via phenotypic and molecular-genetic tests.Results. No metallo-enzyme production was detected. Three isolates were positive for OXA-50-encoding genes in two of them in combination with other oxacillinases or the bla (VEB-1) gene. For the first time, OXA-50-producing P. aeruginosa have been reported in Bulgaria. The increased expression or hyperexpression of MexXY-OprM efflux pump was observed as the main mechanism of resistance. In most cases, it was combined with lower expression or lack of OprD with or without MexAB-OprM hyperexpression. No excessive production of AmpC was detected in comparison to the reference ATCC 27853 P. aeruginosa strain.Conclusion. The increased expression or overexpression of MexXY-OprM efflux pumps is the leading cause of carbapenem resistance in our isolates Pseudomonas, detected in 94 % of the bacteria investigated.201931746726
5796100.9991Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management.201626712265
5093110.9991Evaluation of filter paper to transport inactivated bacteria to detect carbapenem resistance genes by multiplex real-time PCR using high-resolution melting. Infections caused by resistant microorganisms are a complex global public health challenge, and the way to combat the increase of resistance is the development of more modern and faster techniques for resistance detection. This study aimed to evaluate the transport of inactivated bacteria impregnated in a filter paper disk to detect carbapenem resistance genes by multiplex real-time PCR (qPCR) using high-resolution melting (HRM). A total of 88 isolates of 10 different species of Enterobacterales harboring well-characterized carbapenem resistance genes were evaluated. A full 10-µL loop of fresh growth of bacteria were impregnated in a filter paper disk, which was left at room temperature for 2 days in order to simulate the time spent in transportation. Bacterial inactivation was performed with 70% ethanol at 15 min. Afterwards, the DNA was extracted from the paper disks for further analysis by qPCR HRM. The time of 15 min in 70% ethanol was enough to inactivate all the isolates tested. It was possible to correctly identify the presence of the carbapenem resistance gene by HRM qPCR in 87 isolates (98.87%) that were transported in the filter paper disks. Our results indicated that it is possible to use filter paper to transport inactivated bacteria and to identify carbapenem resistance genes by qPCR HRM. This alternative tends to facilitate the access to this technology by many laboratories which do not have the qPCR equipment.202134213734
2233120.9991Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended.201829086343
5041130.9991Development and Validation of a Clinical Laboratory Improvement Amendments-Compliant Multiplex Real-Time PCR Assay for Detection of mcr Genes. Increased use of colistin in both human and veterinary medicine has led to the emergence of plasmid-mediated colistin resistance (mcr genes). In this study, we report the development of a real-time PCR assay using TaqMan probe-based chemistry for detection of mcr genes from bacterial isolates. Positive control isolates harboring mcr-1 and mcr-2 yielded exponential amplification curves with the assay, and the amplification efficiency was 98% and 96% for mcr-1 and mcr-2, respectively. Each target gene could be reproducibly detected from a sample containing 10(3) cfu/mL of mcr-harboring bacteria, and there was no cross-reactivity with DNA extracted from several multidrug-resistant bacteria harboring other resistance genes, but lacking mcr genes. Both sensitivity and specificity of the mcr real-time PCR assay were 100% in a method validation performed with a set of 25 previously well-characterized bacterial isolates containing mcr-positive and -negative bacteria. This newly developed assay is a rapid and sensitive tool for detecting emerging mcr genes in cultured bacterial isolates. The assay was successfully validated according to quality standards of the Clinical Laboratory Improvement Amendments (CLIA).201930942652
5766140.9991Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial.202337192202
2277150.9990Impact of marbofloxacin administration on the emergence of marbofloxacin-resistant E. coli in faecal flora of goats and elucidation of molecular basis of resistance. OBJECTIVES: The level of resistance immediately prior to slaughter in food-producing animals is of great public health significance because of likely transmission of resistant bacteria via the food chain. METHODS: Marbofloxacin was administered to goats at the dose of 2 mg/kg body weight by intramuscular route for 5 days. Faecal Escherichia coli population was monitored and examined for bacteriological procedures. DNA sequencing of gyrA and parC genes was performed to identify mutations at quinolone-resistance determining region, and interaction between marbofloxacin and GyrA was studied by in silico docking. E. coli isolates were screened for plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, aac(6')Ib-cr, qepA, oqxA and oqxB. Efflux pump-mediated resistance was evaluated by ethidium bromide assay, reduction in minimum inhibitory concentration (MIC) values in the presence of efflux pump inhibitors and relative expression of AcrAB-TolC efflux pump. RESULTS: During the treatment period, emergence of marbofloxacin-resistant E. coli strains was observed in gut flora. Quinolone resistance determining regions (QRDRs) in gyrA identified amino acid codon mutations Ser83Leu and Asp87Asn, and Ser80Ile in parC. Docking analysis implied that marbofloxacin could not form strong complexes with mutated DNA-gyrase. A high prevalnce of PMQR genes, especially qnrS, was observed along with overexpression of AcrAB-TolC efflux pump. CONCLUSIONS: The study highlighted the high prevalence of transferable mechanisms of quinolone resistance and over expression of efflux pumps in marbofloxacin-resistant E. coli isolates apart from classic QRDR mutations. The present study recommends to consider the period of dominance of resistant commensals, being excreted by animals during the antimicrobial treatments, while formulating the withdrawal period for drugs, especially in food-producing animals.202032302733
5758160.9990RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa. Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at - 29.28 and - 28.59 Kcal.mol(-1), respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.202337587975
5773170.9990LBJMR medium: a new polyvalent culture medium for isolating and selecting vancomycin and colistin-resistant bacteria. BACKGROUND: Multi-drug resistant bacteria are a phenomenon which is on the increase around the world, particularly with the emergence of colistin-resistant Enterobacteriaceae and vancomycin-resistant enterococci strains. The recent discovery of a plasmid-mediated colistin resistance with the description of the transferable mcr-1 gene raised concerns about the need for an efficient detection method for these pathogens, to isolate infected patients as early as possible. The LBJMR medium was developed to screen for all polymyxin-resistant Gram-negative bacteria, including mcr-1 positive isolates, and vancomycin-resistant Gram-positive bacteria. RESULTS: The LBJMR medium was developed by adding colistin sulfate salt at a low concentration (4 μg/mL) and vancomycin (50 μg/mL), with glucose (7.5 g/L) as a fermentative substrate, to a Purple Agar Base (31 g/L). A total of 143 bacterial strains were used to evaluate this universal culture medium, and the sensitivity and specificity of detection were 100% for the growth of resistant strains. 68 stool samples were cultured on LBJMR, and both colistin-resistant Gram-negative and vancomycin-resistant Gram-positive strains were specifically detected. CONCLUSIONS: The LBJMR medium is a multipurpose selective medium which makes it possible to identify bacteria of interest from clinical samples and to isolate contaminated patients in hospital settings. This is a simple medium that could be easily used for screening in clinical microbiology laboratories.201729169321
5769180.9990Analysis of Nucleotide Sequences Similarity and Protein Prediction of Some Resistance Genes in Escherichia coli Isolated from Iraqi Patients with Urinary Tract Infections. Antibiotic resistance leads to a dramatic increase in the morbidity and mortality caused by infectious diseases. Even though estimates vary widely, the economic cost of antimicrobial-resistant bacteria is on a rise. The current aimed to identify the antimicrobial resistance of Escherichia coli (E. coli). In fact, this study focused on the recent deep-learning methods (sequencing) to investigate E. coli antibiotic resistance and their protein sequences. To evaluate antibiotic resistance, the sequencing method could be considered the method of choice. The E. coli was identified by either specific biochemical tests or polymerase chain reaction (PCR) using the 16S rRNA gene. The results of aadA1 gene sequences demonstrated 10 nucleic acid substitutions throughout, as compared to the reference NCBI database (MG385063). Out of the 10 nucleic acid substitutions, 9 missense effects were observed. While the dfrA1 gene sequences illustrated 20 nucleic acid substitutions throughout, compared to the reference NCBI database (KY706080), out of the 20 nucleic acid substitutions, 8 missense effects were observed. Furthermore, the sul1 gene sequences displayed 20 nucleic acid substitutions throughout, in comparison with the reference NCBI database (CP069561), and out of the 20 nucleic acid substitutions, 12 missense effects were detected. The cat1 gene sequences showed 14 nucleic acid substitutions throughout, compared to the reference NCBI database (NC017660), and out of the 14 nucleic acid substitutions, 8 missense effects were observed. The precise point (Missense) mutation in four genes (aadA1, dfrA1, sul1, and cat1) in the expected sequence is interpreted to be the target site of a site-specific recombination mechanism that led to antibiotics resistance in E. coli isolates.202236618275
5693190.9990Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.201323129055