# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2472 | 0 | 1.0000 | A 'Tuba Drain' incorporated in sink drains reduces counts of antibiotic-resistant bacterial species at the plughole: a blinded, randomized trial in 36 sinks in a hospital outpatient department with a low prevalence of sink colonization by antibiotic-resistant species. BACKGROUND: Multi-resistant Gram-negative bacteria (GNB) survive in hospital drains in traps that contain water and may ascend into the sink because of splashes, or biofilm growth. AIM: To investigate whether the 'Tuba Drain' (TD) a long, bent, continually descending copper tube between the sink outlet and the trap prevents the ascent of bacteria. METHODS: After initial laboratory tests confirmed that the TD prevented bacteria in the U-bend from splashing upwards into the sink outlet, TDs were assessed in a randomized, blinded trial in a hospital outpatient department built in 2019. Sinks were paired into those with a similar clinical exposure and each member of each pair was randomized to receive either new, standard plumbing up to and including the trap (18 sinks) or the same new standard plumbing but including the TD inserted between the sink outlet and trap. Bacterial counts in swabs from the sink outlets were determined blindly before and monthly after the plumbing change for a year. GNB that are associated with clinical infection and carriage of resistance genes, Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia and all Enterobacterales were the organisms of primary interest and termed target bacteria. FINDINGS: The TDs fitted into the required spaces and functioned without problems. The geometric means (over months) of the counts of target bacteria in TD-plumbed sinks was lower than those in their paired controls, P=0.012 (sign test, two-tailed). Prevalence of target bacteria in sinks was low. CONCLUSION: TDs were effective for reducing target bacteria in sinks. | 2025 | 39515476 |
| 5687 | 1 | 0.9993 | The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance. | 2020 | 32646458 |
| 5284 | 2 | 0.9993 | Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted. | 2019 | 31822712 |
| 2596 | 3 | 0.9993 | 16S rRNA amplicon sequencing and antimicrobial resistance profile of intensive care units environment in 41 Brazilian hospitals. INTRODUCTION: Infections acquired during healthcare setting stay pose significant public health threats. These infections are known as Healthcare-Associated Infections (HAI), mostly caused by pathogenic bacteria, which exhibit a wide range of antimicrobial resistance. Currently, there is no knowledge about the global cleaning process of hospitals and the bacterial diversity found in ICUs of Brazilian hospitals contributing to HAI. OBJECTIVE: Characterize the microbiome and common antimicrobial resistance genes present in high-touch Intensive Care Unit (ICU) surfaces, and to identify the potential contamination of the sanitizers/processes used to clean hospital surfaces. METHODS: In this national, multicenter, observational, and prospective cohort, bacterial profiles and several antimicrobial resistance genes from 41 hospitals across 16 Brazilian states were evaluated. Using high-throughput 16S rRNA amplicon sequencing and real-time PCR, the bacterial abundance and resistance genes presence were analyzed in both ICU environments and cleaning products. RESULTS: We identified a wide diversity of microbial populations with a recurring presence of HAI-related bacteria among most of the hospitals. The median bacterial positivity rate in surface samples was high (88.24%), varying from 21.62 to 100% in different hospitals. Hospitals with the highest bacterial load in samples were also the ones with highest HAI-related abundances. Streptococcus spp., Corynebacterium spp., Staphylococcus spp., Bacillus spp., Acinetobacter spp., and bacteria from the Flavobacteriaceae family were the microorganisms most found across all hospitals. Despite each hospital particularities in bacterial composition, clustering profiles were found for surfaces and locations in the ICU. Antimicrobial resistance genes mecA, bla (KPC-like), bla (NDM-like), and bla (OXA-23-like) were the most frequently detected in surface samples. A wide variety of sanitizers were collected, with 19 different active principles in-use, and 21% of the solutions collected showed viable bacterial growth with antimicrobial resistance genes detected. CONCLUSION: This study demonstrated a diverse and spread pattern of bacteria and antimicrobial resistance genes covering a large part of the national territory in ICU surface samples and in sanitizers solutions. This data should contribute to the adoption of surveillance programs to improve HAI control strategies and demonstrate that large-scale epidemiology studies must be performed to further understand the implications of bacterial contamination in hospital surfaces and sanitizer solutions. | 2024 | 39076419 |
| 2315 | 4 | 0.9992 | The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Infections represent a major complication for burn-injured patients. The aim of this study was to highlight the changes in the incidence and antimicrobial resistance of bacterial strains isolated from burn patients, at the end of the COVID-19 pandemic, in relation to the antibiotics used during the pandemic. A comparative analysis of the demographic data and the microorganisms identified in the clinical samples of two groups of burn patients admitted to a university hospital in Romania was carried out. The first group consisted of 48 patients and the second of 69 patients, hospitalized in January-August 2020 and 2023, respectively. The bacterial species with the highest incidence were S. aureus, A. baumannii, Pseudomonas spp. The significant changes between 2023 and 2020 are reflected in the increase in the frequency of non-fermentative Gram-negative bacteria, especially S. maltophilia, and the increase in antimicrobial resistance of Pseudomonas and Klebsiella spp. Klebsiella spp. did not change in frequency (7%), but there was a significant increase in the incidence of K. pneumoniae strains with pan-drug resistant behaviour to antibiotics (40%), including colistin. The phenomenon can be explained by the selection of specimens carrying multiple resistance genes, as a result of antibiotic treatment during the COVID-19 period. The post-pandemic antimicrobial resistance detected in burn patients indicates the need for permanent surveillance of the resistance trends, primarily due to the limited therapeutic options available for these patients. | 2024 | 39334997 |
| 2787 | 5 | 0.9992 | Multiplex Polymerase Chain Reaction/Pooled Antibiotic Susceptibility Testing Was Not Associated with Increased Antibiotic Resistance in Management of Complicated Urinary Tract Infections. OBJECTIVE: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated. METHODS: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12). RESULTS: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, p = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, p = 0.04). CONCLUSION: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted. | 2023 | 37193300 |
| 2783 | 6 | 0.9992 | Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria. AIMS: To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. METHODS AND RESULTS: For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. CONCLUSIONS: β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. SIGNIFICANCE AND IMPACT OF THIS STUDY: Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. | 2017 | 28845592 |
| 5820 | 7 | 0.9992 | Sequencing Methods to Study the Microbiome with Antibiotic Resistance Genes in Patients with Pulmonary Infections. Various antibiotic-resistant bacteria (ARB) are known to induce repeated pulmonary infections and increase morbidity and mortality. A thorough knowledge of antibiotic resistance is imperative for clinical practice to treat resistant pulmonary infections. In this study, we used a reads-based method and an assembly-based method according to the metagenomic next-generation sequencing (mNGS) data to reveal the spectra of ARB and corresponding antibiotic resistance genes (ARGs) in samples from patients with pulmonary infections. A total of 151 clinical samples from 144 patients with pulmonary infections were collected for retrospective analysis. The ARB and ARGs detection performance was compared by the reads-based method and assembly-based method with the culture method and antibiotic susceptibility testing (AST), respectively. In addition, ARGs and the attribution relationship of common ARB were analyzed by the two methods. The comparison results showed that the assembly-based method could assist in determining pathogens detected by the reads-based method as true ARB and improve the predictive capabilities (46% > 13%). ARG-ARB network analysis revealed that assembly-based method could promote determining clear ARG-bacteria attribution and 101 ARGs were detected both in two methods. 25 ARB were obtained by both methods, of which the most predominant ARB and its ARGs in the samples of pulmonary infections were Acinetobacter baumannii (ade), Pseudomonas aeruginosa (mex), Klebsiella pneumoniae (emr), and Stenotrophomonas maltophilia (sme). Collectively, our findings demonstrated that the assembly-based method could be a supplement to the reads-based method and uncovered pulmonary infection-associated ARB and ARGs as potential antibiotic treatment targets. | 2024 | 39113195 |
| 2252 | 8 | 0.9992 | Antimicrobial resistance of 3 types of gram-negative bacteria isolated from hospital surfaces and the hands of health care workers. BACKGROUND: There has been an increased focus in recent years on antimicrobial resistance of bacteria isolated from clinical samples. However, resistance of bacteria from hospital environments has been less frequently investigated. METHODS: According to hygienic standard for disinfection in hospitals, samples were collected from hospital inanimate surfaces and the hands of health care workers after daily cleaning. An automatic microorganism analyzer was used to identify bacteria and test for antimicrobial susceptibility. Polymerase chain reaction was used to detect antimicrobial resistance genes. RESULTS: The detection rate of bacteria in general wards was significantly higher than that in intensive care units. The isolates were predominantly gram-negative (GN) bacteria, with Pseudomonas aeruginosa, Enterobacter cloacae, and Klebsiella pneumoniae being the most common. P aeruginosa isolates from other surfaces were much higher than those from medical instruments. E cloacae was isolated more frequently from the hands of other staff than medical staff. Most P aeruginosa and K pneumoniae were resistant to sulfonamides and β-lactam antimicrobials. Only 1 strain of P aeruginosa and 1 strain of K pneumoniae showed multiple antimicrobials resistance. CONCLUSIONS: The GN bacteria isolated from hospital environments demonstrate variable resistance to antimicrobials. | 2017 | 28780198 |
| 2595 | 9 | 0.9992 | Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. BACKGROUND: In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS: Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS: Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION: Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings. | 2024 | 38838607 |
| 5093 | 10 | 0.9992 | Evaluation of filter paper to transport inactivated bacteria to detect carbapenem resistance genes by multiplex real-time PCR using high-resolution melting. Infections caused by resistant microorganisms are a complex global public health challenge, and the way to combat the increase of resistance is the development of more modern and faster techniques for resistance detection. This study aimed to evaluate the transport of inactivated bacteria impregnated in a filter paper disk to detect carbapenem resistance genes by multiplex real-time PCR (qPCR) using high-resolution melting (HRM). A total of 88 isolates of 10 different species of Enterobacterales harboring well-characterized carbapenem resistance genes were evaluated. A full 10-µL loop of fresh growth of bacteria were impregnated in a filter paper disk, which was left at room temperature for 2 days in order to simulate the time spent in transportation. Bacterial inactivation was performed with 70% ethanol at 15 min. Afterwards, the DNA was extracted from the paper disks for further analysis by qPCR HRM. The time of 15 min in 70% ethanol was enough to inactivate all the isolates tested. It was possible to correctly identify the presence of the carbapenem resistance gene by HRM qPCR in 87 isolates (98.87%) that were transported in the filter paper disks. Our results indicated that it is possible to use filter paper to transport inactivated bacteria and to identify carbapenem resistance genes by qPCR HRM. This alternative tends to facilitate the access to this technology by many laboratories which do not have the qPCR equipment. | 2021 | 34213734 |
| 5683 | 11 | 0.9991 | Association between antimicrobial resistance among Enterobacteriaceae and burden of environmental bacteria in hospital acquired infections: analysis of clinical studies and national reports. BACKGROUND: WHO has named three groups of gram-negative bacteria "our critical antimicrobial resistance-related problems globally". It is thus a priority to unveil any important covariation of variables behind this three-headed epidemic, which has gained alarming proportions in Low Income Countries, and spreads rapidly. Environmental bacteria including Acinetobacter spp. are common nosocomial pathogens in institutions that have high rates of antimicrobial resistance among other groups of gram-negative bacteria. METHODS: Based on two different data sources, we calculated the correlation coefficient (Pearson's r) between pathogenic burden of Acinetobacter spp. and antimicrobial resistance among Enterobacteriaceae in European and African nosocomial cohorts. CLINICAL REPORTS: Database search for studies on nosocomial sepsis in Europe and Africa was followed by a PRISMA-guided selection process. NATIONAL REPORTS: Data from Point prevalence survey of healthcare-associated infections published by European Centre for Disease Prevention and Control were used to study the correlation between prevalence of Acinetobacter spp. and antimicrobial resistance among K. pneumoniae in blood culture isolates. FINDINGS: The two approaches both revealed a strong association between prevalence of Acinetobacter spp. and rates of resistance against 3. generation cephalosporins among Enterobacteriaceae. In the study of clinical reports (13 selected studies included), r was 0.96 (0.80-0.99) when calculated by proportions on log scale. Based on national reports, r was 0.80 (0.56-0.92) for the correlation between resistance rates of K. pneumoniae and proportion of Acinetobacter spp. INTERPRETATION: The critical antimicrobial resistance-related epidemics that concern enteric and environmental gram-negative bacteria are not independent epidemics; they have a common promoting factor, or they are mutually supportive. Further, accumulation of antimicrobial resistance in nosocomial settings depends on the therapeutic environment. Burden of Acinetobacter spp. as defined here is a candidate measure for this dependence. | 2019 | 31372534 |
| 5658 | 12 | 0.9991 | Molecular identification and biofilm formation of aerobic and anaerobic coinfection bacterial isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. BACKGROUND: Coinfections and resistant bacterial infections are more likely to occur in cystic fibrosis patients because their immune systems are weak. The purpose of this study was to identify by molecular means as well as the formation of biofilm of aerobic and anaerobic coinfection bacteria isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. METHODS: In this investigation, 130 clinical specimens were collected from 130 CF patients by universal primer. Biofilm formation was investigated using the microtiter plate method. Antibiotic resistance was measured using Vitec 2 device. In addition, identification of methicillin-resistant Staphylococcus aureus using genes mecA was performed. MAIN FINDINGS: In aerobic bacteria, Pseudomonas aeruginosa was detected in (32%) of samples. In anaerobic bacteria (16%) Prevotella spp. was the most frequently isolated anaerobe bacteria found in of the CF patients. In this study, 75% of the bacteria could form biofilms, while 23% were unable to biofilm formation. CONCLUSION: In conclusion, P. aeruginosa was found to be the most frequently isolated bacterium from patients with CF, and many of these bacteria could form biofilms. Additionally, the high prevalence of antibiotic resistance indicates the urgent need for increased attention to antibiotic preparation and patient screening concerning bacterial coinfections and the virulence and adhesion factors of these bacteria. Furthermore, the present study demonstrates that the coinfection of bacteria with high antibiotic resistance and a high capacity for biofilm formation can pose a life-threatening risk to CF patients, mainly due to their weakened immune systems. | 2023 | 37566205 |
| 1828 | 13 | 0.9991 | Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Carbapenemase-producing Enterobacterales (CPE) constitute a significant threat to healthcare systems. Continuous surveillance is important for the management and early warning of these bacteria. Sewage monitoring has been suggested as a possible resource-efficient complement to traditional clinical surveillance. It should not least be suitable for rare forms of resistance since a single sewage sample contains bacteria from a large number of individuals. Here, the value of sewage monitoring in early warning of CPE was assessed at the Sahlgrenska University Hospital in Gothenburg, Sweden, a setting with low prevalence of CPE. Twenty composite hospital sewage samples were collected during a two-year period. Carbapenemase genes in the complex samples were analyzed by quantitative PCR and the CPE loads were assessed through cultures on CPE-selective agar followed by species determination as well as phenotypic and genotypic tests targeting carbapenemases of presumed CPE. The findings were related to CPE detected in hospitalized patients. A subset of CPE isolates from sewage and patients were subjected to whole genome sequencing. For three of the investigated carbapenemase genes, bla(NDM), bla(OXA-48-like) and bla(KPC), there was concordance between gene levels and abundance of corresponding CPE in sewage. For the other two analyzed genes, bla(VIM) and bla(IMP), there was no such concordance, most likely due to the presence of those genes in non-Enterobacterales populating the sewage samples. In line with the detection of OXA-48-like- and NDM-producing CPE in sewage, these were also the most commonly detected CPE in patients. NDM-producing CPE were detected on a single occasion in sewage and isolated strains were shown to match strains detected in a patient. A marked peak in CPE producing OXA-48-like enzymes was observed in sewage during a few months. When levels started to increase there were no known cases of such CPE at the hospital but soon after a few cases were detected in samples from patients. The OXA-48-like-producing CPE from sewage and patients represented different strains, but they carried similar bla(OXA-48-like)-harbouring mobile genetic elements. In conclusion, sewage analyses show both promise and limitations as a complement to traditional clinical resistance surveillance for early warning of rare forms of resistance. Further evaluation and careful interpretation are needed to fully assess the value of such a sewage monitoring system. | 2021 | 34082263 |
| 2597 | 14 | 0.9991 | One year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces. Several studies have shown the ubiquitous presence of bacteria in hospital surfaces, staff, and patients. Frequently, these bacteria are related to HAI (healthcare-associated infections) and carry antimicrobial resistance (AMR). These HAI-related bacteria contribute to a major public health issue by increasing patient morbidity and mortality during or after hospital stay. Bacterial high-throughput amplicon gene sequencing along with identification of AMR genes, as well as whole genome sequencing (WGS), are biotechnological tools that allow multiple-sample screening for a diversity of bacteria. In this paper, we used these methods to perform a one-year cross sectional profiling of bacteria and AMR genes in adult and neonatal intensive care units (ICU and NICU) in a Brazilian public, tertiary hospital. Our results showed high abundances of HAI-related bacteria such as S. epidermidis, S. aureus, K. pneumoniae, A. baumannii complex, E. coli, E. faecalis, and P. aeruginosa in patients and hospital surfaces. Most abundant AMR genes detected throughout ICU and NICU were mecA, blaCTX-M-1 group, blaSHV-like, and blaKPC-like. We found that NICU environment and patients were more widely contaminated with pathogenic bacteria than ICU. Patient samples, despite the higher bacterial load, have lower bacterial diversity than environmental samples in both units. Finally, we also identified contamination hotspots in the hospital environment showing constant frequencies of bacterial and AMR contamination throughout the year. Whole genome sequencing (WGS), 16S rRNA oligotypes, and AMR identification allowed a high-resolution characterization of the hospital microbiome profile. | 2020 | 32492060 |
| 5668 | 15 | 0.9991 | The co-selection of fluoroquinolone resistance genes in the gut flora of Vietnamese children. Antimicrobial consumption is one of the major contributing factors facilitating the development and maintenance of bacteria exhibiting antimicrobial resistance. Plasmid-mediated quinolone resistance (PMQR) genes, such as the qnr family, can be horizontally transferred and contribute to reduced susceptibility to fluoroquinolones. We performed an observational study, investigating the copy number of PMQR after antimicrobial therapy. We enrolled 300 children resident in Ho Chi Minh City receiving antimicrobial therapy for acute respiratory tract infections (ARIs). Rectal swabs were taken on enrollment and seven days subsequently, counts for Enterobacteriaceae were performed and qnrA, qnrB and qnrS were quantified by using real-time PCR on metagenomic stool DNA. On enrollment, we found no association between age, gender or location of the participants and the prevalence of qnrA, qnrB or qnrS. Yet, all three loci demonstrated a proportional increase in the number of samples testing positive between day 0 and day 7. Furthermore, qnrB demonstrated a significant increase in copy number between paired samples (p<0.001; Wilcoxon rank-sum), associated with non-fluoroquinolone combination antimicrobial therapy. To our knowledge, this is the first study describing an association between the use of non-fluoroquinolone antimicrobials and the increasing relative prevalence and quantity of qnr genes. Our work outlines a potential mechanism for the selection and maintenance of PMQR genes and predicts a strong effect of co-selection of these resistance determinants through the use of unrelated and potentially unnecessary antimicrobial regimes. | 2012 | 22937000 |
| 2254 | 16 | 0.9991 | Hospitalized Pets as a Source of Carbapenem-Resistance. The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to "old class antimicrobials." To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by bla (NDM-1) and bla (OXA-23). In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings. | 2018 | 30574124 |
| 2243 | 17 | 0.9991 | Clinical and metagenomic predicted antimicrobial resistance in pediatric critically ill patients with infectious diseases in a single center of Zhejiang. BACKGROUND: Antimicrobial resistance (AMR) poses a significant threat to pediatric health; therefore, precise identification of pathogens as well as AMR is imperative. This study aimed at comprehending antibiotic resistance patterns among critically ill children with infectious diseases admitted to pediatric intensive care unit (PICU) and to clarify the impact of drug-resistant bacteria on the prognosis of children. METHODS: This study retrospectively collected clinical data, identified pathogens and AMR from 113 children's who performed metagenomic next-generation sequencing for pathogen and antibiotic resistance genes identification, and compared the clinical characteristic difference and prognostic effects between children with and without AMR detected. RESULTS: Based on the presence or absence of AMR test results, the 113 patients were divided into Antimicrobial resistance test positive group (AMRT+, n = 44) and Antimicrobial resistance test negative group (AMRT-, n = 69). Immunocompromised patients (50% vs. 28.99%, P = 0.0242) and patients with underlying diseases (70.45% vs. 40.58%, P = 0.0019) were more likely to develop resistance to antibiotics. Children in the AMRT + group showed significantly increased C-reaction protein, score of pediatric sequential organ failure assessment and pediatric risk of mortality of children and longer hospital stay and ICU stay in the AMRT + group compared to the AMRT+- group (P < 0.05). Detection rate of Gram-negative bacteria was significantly higher in the AMRT + group rather than Gram-positive bacteria (n = 45 vs. 31), in contrast to the AMRT- group (n = 10 vs. 36). Cephalosporins, β-lactams/β-Lactamase inhibitors, carbapenems and sulfonamides emerged as the most common types of drug resistance in children. Resistance rates to these antibiotics exhibited considerable variation across common pathogens, including Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. CONCLUSIONS: The development of drug resistance in bacteria will significantly affect the prognosis of patients. The significant differences in drug resistance of common pathogenic bacteria indicate that identification of drug resistance is important for the rational use of antibiotics and patient prognosis. | 2024 | 39707302 |
| 2314 | 18 | 0.9991 | Imipenem resistance in aerobic gram-negative bacteria. A prospective study was undertaken to observe the emergence of resistance to imipenem, if any, among aerobic gram-negative bacteria. A total of 736 isolates were tested during 1994-95 and less than 1% of them were resistant to imipenem, whereas the next year ('95-'96) the rate increased to 11 of the 903 isolates tested. The resistant isolates during '94-'95 were all Stenotrophomonas maltophilia whereas the spectrum of resistant bacterial species increased in '95-'96 to include Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter calcoaceticus, Enterobacter cloacae, Proteus mirabilis and Morganella morganii with a tendency to an increase in the minimum inhibitory concentration (MIC) in the later part of the year. A majority (72%) of the resistant isolates were from patients with burns, and burn wounds were most frequently infected with such organisms. These data suggest that over a period of time aerobic gram-negative bacteria may develop resistance to imipenem and the pool of such bacteria increases with extensive use of the drug. Non-fermentative aerobic bacteria tend to develop resistance faster with widespread dissemination than Enterobacteriaceae. Hospital Burn Units are a potential source of development of such resistance. | 1998 | 9603633 |
| 5667 | 19 | 0.9991 | Quantifying antibiotic impact on within-patient dynamics of extended-spectrum beta-lactamase resistance. Antibiotic-induced perturbation of the human gut flora is expected to play an important role in mediating the relationship between antibiotic use and the population prevalence of antibiotic resistance in bacteria, but little is known about how antibiotics affect within-host resistance dynamics. Here we develop a data-driven model of the within-host dynamics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. We use bla(CTX-M) (the most widespread ESBL gene family) and 16S rRNA (a proxy for bacterial load) abundance data from 833 rectal swabs from 133 ESBL-positive patients followed up in a prospective cohort study in three European hospitals. We find that cefuroxime and ceftriaxone are associated with increased bla(CTX-M) abundance during treatment (21% and 10% daily increase, respectively), while treatment with meropenem, piperacillin-tazobactam, and oral ciprofloxacin is associated with decreased bla(CTX-M) (8% daily decrease for all). The model predicts that typical antibiotic exposures can have substantial long-term effects on bla(CTX-M) carriage duration. | 2020 | 32379042 |