# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2465 | 0 | 1.0000 | Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies. | 2022 | 36557685 |
| 1645 | 1 | 0.9995 | Epidemiological investigation and β-lactam antibiotic resistance of Riemerella anatipestifer isolates with waterfowl origination in Anhui Province, China. Riemerella anatipestifer (R. anatipestifer) is a highly pathogenic and complex serotypes waterfowl pathogen with inherent resistance to multiple antibiotics. This study was aimed to investigate the antibiotic resistance characteristics and genomic features of R. anatipestifer isolates in Anhui Province, China in 2023. A total of 287 cases were analysed from duck farms and goose farms, and the R. anatipestifer isolates were subjected to drug resistance tests for 30 antimicrobials. Whole genome sequencing (WGS) and bioinformatics analysis were performed on the bacterial genomes, targeting the β-lactam resistance genes. The results showed that a total of 74 isolates of R. anatipestifer were isolated from 287 cases, with a prevalence of 25.8%. The antimicrobial susceptibility testing (AST) revealed that all the 74 isolates were resistant to multiple drugs, ranging from 13 to 26 kinds of drugs. Notably, these isolates showed significant resistance to aminoglycosides and macrolides, which are also commonly used in clinical practices. Data revealed the presence of several β-lactamase-related genes among the isolates, including a novel bla(RASA-1) variant (16.2%), the class A extended-spectrum β-lactamase bla(RAA-1) (12.2%), and a bla(OXA-209) variant (98.6%). Functional analysis of the variants bla(RASA-1) and bla(OXA-209) showed that the bla(RASA-1) variant exhibited activity against various β-lactam antibiotics while their occurrence in R. anatipestifer were not common. The bla(OXA-209) variant, on the other hand, did not perform any β-lactam antibiotic resistance. Furthermore, we observed that bla(RAA-1) could undergo horizontal transmission among different bacteria via the insertion sequence IS982. In conclusion, this study delves into the high prevalence of R. anatipestifer infection in waterfowl in Anhui, China. The isolated strains exhibit severe drug resistance issues, closely associated with the prevalence of antibiotic resistance genes (ARG). Additionally, our research investigates the β-lactam antibiotic resistance mechanism in R. anatipestifer. | 2024 | 38387287 |
| 1658 | 2 | 0.9994 | Genetic characterization of extraintestinal Escherichia coli isolates from chicken, cow and swine. Phenotypic determination of antimicrobial resistance in bacteria is very important for diagnosis and treatment, but sometimes this procedure needs further genetic evaluation. Whole-genome sequencing plays a critical role in deciphering and advancing our understanding of bacterial evolution, transmission, and surveillance of antimicrobial resistance. In this study, whole-genome sequencing was performed on nineteen clinically extraintestinal Escherichia coli isolates from chicken, cows and swine and showing different antimicrobial susceptibility. A total of 44 different genes conferring resistance to 11 classes of antimicrobials were detected in 15 of 19 E. coli isolates (78.9%), and 22 types of plasmids were detected in 15/19 (78.9%) isolates. In addition, whole-genome sequencing of these 19 isolates identified 111 potential virulence factors, and 53 of these VFDB-annotated genes were carried by all these 19 isolates. Twelve different virulence genes were identified while the most frequent ones were gad (glutamate decarboxylase), iss (increased serum survival) and lpfA (long polar fimbriae). All isolates harbored at least one of the virulence genes. The findings from comparative genomic analyses of the 19 diverse E. coli isolates in this study provided insights into molecular basis of the rising multi-drug resistance in E. coli. | 2018 | 30019301 |
| 1648 | 3 | 0.9994 | Molecular characterization of the multi-drug resistant Myroides odoratimimus isolates: a whole genome sequence-based study to confirm carbapenem resistance. The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for bla(KPC), bla(OXA), bla(VIM), bla(IMP), bla(MUS), bla(TUS), bla(NDM), and bla(B) genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the bla(MUS-1) gene. WGS identified bla(MUS-1), erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections. | 2024 | 38127105 |
| 1643 | 4 | 0.9994 | Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface. | 2022 | 37430937 |
| 2042 | 5 | 0.9994 | Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, bla(CTX-M15) and bla(TEM-1), whereas one isolate harbored an additional ESBL, bla(OXA-1). All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli. | 2020 | 31509034 |
| 1856 | 6 | 0.9994 | Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic. | 2022 | 36350178 |
| 1682 | 7 | 0.9994 | Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context. | 2019 | 31849911 |
| 1857 | 8 | 0.9994 | Diverse Acinetobacter in retail meat: a hidden vector of novel species and antimicrobial resistance genes, including plasmid-borne bla(OXA-58), mcr-4.3 and tet(X3). Acinetobacter species, particularly Acinetobacter baumannii, are recognized pathogens in clinical settings, yet their presence in food systems, including fresh meat remains underexplored. This comprehensive study investigated the prevalence, diversity, concentration, and antimicrobial resistance of Acinetobacter spp. in 100 fresh meat samples from diverse animal sources across various packaging conditions. Acinetobacter isolates were initially characterized by MALDI-TOF MS, with comprehensive genomic characterization through whole-genome sequencing (WGS) of 116 representative isolates. Taxonomic refinement was performed using GTDB-Tk, core-genome, rpoB gene and Average Nucleotide Identity (ANI) phylogenomic approaches. Antimicrobial resistance genes (ARGs), and their plasmidic locations, were identified, and antimicrobial susceptibility profiles were determined for 33 A. baumannii isolates. Acinetobacter spp. were detected in 74 % of samples, with turkey meat showing the highest occurrence. The counts of this bacterium ranged from < 0.23 to 3.13 log(10) CFU/g. A total of 20 know species and 2 putative novel Acinetobacter species were identified by genomic analysis. Moreover, 16 novel A. baumannii sequence types (STs) were identified. ARG profiling revealed a complex resistome, including plasmid-located ARGs spanning multiple antibiotic classes. Critical findings include the presence of plasmid-borne bla(OXA-58), mcr-4.3, and tet(X3) genes. This study expands our understanding of Acinetobacter spp. diversity and reveals fresh meat as a significant vector for this genus, including species associated with human infections. Moreover, the detection of diverse resistance genes, including some associated with plasmids and conferring resistance to critically important antibiotics, underscores the potential public health implications of meat as a transmission pathway for these bacteria. | 2025 | 40513431 |
| 1647 | 9 | 0.9994 | Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The bla(CTX-M-15) gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria. | 2020 | 31279801 |
| 1704 | 10 | 0.9994 | Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria. | 2025 | 40415138 |
| 1681 | 11 | 0.9994 | Molecular Analyses of Biofilm-Producing Clinical Acinetobacter baumannii Isolates from a South Indian Tertiary Care Hospital. OBJECTIVES: The aim of the study was to determine the presence of antimicrobial-resistance (AMR) genes, virulence genes, and mobile genetic elements (MGEs) in 14 biofilm-producing clinical isolates of Acinetobacter baumannii. MATERIALS AND METHODS: PCR amplification was performed to analyse the prevalence of genes associated with antibiotic resistance (extended-spectrum β-lactamases [ESBLs] and metallo-β-lactamases [MBLs]), virulence factors, MGEs (class 1 integron, Tn1213, and A. baumannii antibiotic resistance [AbaR]), and comM among the study isolates. Random amplified polymorphic DNA (RAPD) PCR was then deployed to understand their phylogenetic relationship. All the isolates were investigated for biofilm production. RESULTS: Two isolates were antibiotic-sensitive (AS), 3 were multi-drug-resistant (MDR), and the remaining 9 were extensively drug-resistant (XDR). The majority of the isolates were found to be positive for biofilm production and were sensitive against tetracycline and colistin only. Ab14 and Ab11 were found to be resistant to minocycline and colistin, respectively. blaTEM, blaOXA, blaNDM, blaVIM, blaSIM, and blaPER-1; class 1 integron; composite transposon Tn1213; AbaR island, and virulence factor genes were detected among the isolates. These pathogens were found to have originated from multiple clonal lineages. CONCLUSION: Biofilm-producing A. baumannii with multiple virulence and AMR genes pose serious clinical challenges. The presence of MGEs further compounds the situation as these isolates serve as potential reservoirs of AMR and virulence genes. Together with their capacity for natural competence, A. baumannii, if left unchecked, will lead to the spread of resistance determinants to previously sensitive bacteria and may aid in the emergence of untreatable pan-drug-resistant phenotypes. | 2020 | 32380504 |
| 2037 | 12 | 0.9994 | Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids. | 2024 | 38571400 |
| 1646 | 13 | 0.9994 | Draft genome analysis of a multidrug-resistant Pseudomonas aeruginosa CMPL223 from hospital wastewater in Dhaka, Bangladesh. OBJECTIVES: Multidrug-resistant (MDR) clones of Pseudomonas aeruginosa can cause complicated infections in human. The emergence of ST664 of MDR P. aeruginosa has been reported in Nepal, Iran and China. Here, we present the draft genome analysis of a MDR P. aeruginosa CMPL223 isolated from hospital wastewater in Bangladesh to understand antimicrobial resistance trends and pathogenicity. METHODS: Cetrimide agar was used for isolation of P. aeruginosa. Polymerase chain reaction (PCR) was carried out for detection of biofilm and integron related genes. Bacterial susceptibility to antibiotics was determined by disc diffusion method. Sequencing of whole genomic DNA was performed using Illumina iSeq 100 platform. Following quality checking of raw reads, assembly and annotation of sequences, a wide array of in silico tools were used for characterization of draft genome. RESULTS: The isolate was a strong biofilm former, carried integron 1 in chromosomal DNA, and was predicted to be pathogenic. It belongs to sequence type ST664 and O7 serogroup. The assembled genome contained 12 acquired antimicrobial resistant (AMR) genes, 2 prophage regions, 240 virulence genes, 71 drug targets, 142 insertion sequences, and 1 CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) array. The isolate was resistant to 21 out of 23 antibiotics, except colistin and imipenem. Comprehensive Antibiotic Resistance Database and ResFinder revealed that bacteria harboured bla(OXA-50), bla(OXA-796), bla(PDC-374,) fosA, tet(G), sul1, catB7, aph(3')-iib and ant(4')-IIb genes, conferring resistance to different classes of antibiotics. The results of in vitro characterization were consistent with the possible expression of detected antibiotic resistant genes through in silico analysis. CONCLUSION: Our data suggested the emergence of MDR P. aeruginosa ST664, which needs control measures for limiting its dissemination. | 2022 | 35793775 |
| 881 | 14 | 0.9994 | Genetic analysis of multidrug-resistant and AmpC-producing Citrobacter freundii. OBJECTIVE: During the last decade, antimicrobial resistance within pet animals has received worldwide concern owing to their close contact with humans and the possibility of animal-human co-transmission of multidrug-resistant bacteria. This study examined phenotypic as well as molecular mechanisms associated with antimicrobial resistance in a multidrug-resistant, and AmpC-producing Citrobacter freundii recovered from a dog suffering from kennel cough in. MATERIALS AND METHODS: The isolate was recovered from a two-year-old dog suffering from severe respiratory manifestations. Phenotypically, the isolate was resistant to a wide range of antimicrobial agents including, aztreonam, ciprofloxacin, levofloxacin, gentamicin, minocycline, piperacillin, sulfamethoxazole-trimethoprim, and tobramycin. PCR and sequencing confirmed that the isolate harbors multiple antibiotic resistance genes, such as blaCMY-48 and blaTEM-1B which mediate resistance to B-lactams, and qnrB6 which mediate resistance to quinolone antibiotics. RESULTS: Multilocus sequence typing confirmed that the isolate belongs to ST163. Due to the unique characteristics of this pathogen, the whole genome sequencing was performed. In addition to the previously confirmed antibiotic resistance genes by PCR, the isolate was also confirmed to harbor other resistance genes which mediate resistance to aminoglycoside (aac(3)-IId, aac(6')-Ib-cr, aadA16, aph(3'')-Ib, and aph(6)-Id), macrolides [mph(A)), phenicols (floR), rifampicin (ARR-3), sulphonamides (sul1 and sul2), trimethoprim (dfrA27), and tetracycline (tet(A) and tet(B)]. CONCLUSIONS: The results presented in this study confirm that pets are possible sources of highly pathogenic multidrug-resistant microbes with unique genetic characteristics taking into consideration the high potential for their dissemination to humans, which can undoubtedly develop of severe infections in these hosts. | 2023 | 36808363 |
| 1644 | 15 | 0.9994 | Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Enterobacterales isolated from wild animals in captivity. BACKGROUND: Over the past few decades, antimicrobial resistance (AMR) has emerged as a global health challenge in human and veterinary medicine. Research on AMR genes in captive wild animals has increased. However, the presence and molecular characteristics of tet(X)-carrying bacteria in these animals remain unknown. METHODS: Eighty-four samples were collected from captive wild animals. tet(X) variants were detected using polymerase chain reaction and the isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. All isolated strains were subjected to antimicrobial susceptibility testing and whole-genome sequencing. The virulence of an Escherichia coli strain carrying enterotoxin genes was assessed using a Galleria mellonella larval model. RESULTS: We isolated two tet(X4)-positive E. coli strains and one tet(X4)-positive Raoultella ornithinolytica strain. Antimicrobial susceptibility tests revealed that all three tet(X4)-carrying bacteria were sensitive to the 13 tested antimicrobial agents, but exhibited resistance to tigecycline. Notably, one tet(X4)-carrying E. coli strain producing an enterotoxin had a toxic effect on G. mellonella larvae. Whole-genome sequencing analysis showed that the two tet(X4)-carrying E. coli strains had more than 95% similarity to tet(X4)-containing E. coli strains isolated from pigs and humans in China. CONCLUSION: The genetic environment of tet(X4) closely resembled that of the plasmid described in previous studies. Our study identified tet(X4)-positive strains in wildlife and provided valuable epidemiological data for monitoring drug resistance. The identification of enterotoxin-producing E. coli strains also highlights the potential risks posed by virulence genes. | 2024 | 39077391 |
| 5615 | 16 | 0.9993 | Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance. | 2024 | 39200000 |
| 1988 | 17 | 0.9993 | Different fosA genes were found on mobile genetic elements in Escherichia coli from wastewaters of hospitals and municipals in Turkey. AIMS: The increasing number of globally established fosfomycin-resistant (Fos(R)) Gram-negative bacteria inspired us to investigate the occurrence of Fos(R)Enterobacterales populations (esp. E. coli) in samples of city wastewater treatment plants (WWTPs) and hospital sewage in Hatay, Turkey. Fos(R) target bacteria were further characterized for their clonal relatedness, resistomes and mobile genetic elements (MGEs) to evaluate their impact on fosfomycin resistance dissemination. METHODS: A total of 44 samples from raw and treated waters of WWTPs as well as of two hospitals in the Hatay province were subjected to selective cultivation for recovering Fos(R)Enterobacterales. The presence of fosA was verified by PCR and Sanger amplicon sequencing. Detected E. coli were further evaluated against antimicrobial susceptibility-testing, macrorestriction profiling (PFGE) and whole-genome sequencing (WGS). Bioinformatics analysis was performed for genome subtyping (i.e., MLST, serotype), resistome/virulome determination and dissection of the genetic determinants of plasmidic fosA3/4 resistances. RESULTS: Besides ten non-E. coli Enterobacterales, 29 E. coli were collected within this study. In silico-based subtyping revealed that E. coli isolates were assigned to six different serovars and 14 sequence types (ST), while O8:H21 and ST410 represented the major prevalent types, respectively. Fosfomycin resistance in the isolates was found to be mediated by the fosA4 (n = 18), fosA3 (n = 10) and fosA (n = 1), which are frequently associated with transmissible MGEs. Reconstruction of plasmid-associated fosA gene context revealed a linkage between the resistance cassette and IS6 (IS26 family) transposases, which might represent a major driver for the distribution of the genes and the generation of novel fosA-carrying plasmids. CONCLUSIONS: The occurrence of plasmid-mediated, transmissible Fos(R) in E. coli from wastewater pose a foreseeable threat to "One-Health". To minimize further spread of the resistances in bacterial populations associated with environmental, animal and human health further resistance monitoring and management strategies must be developed. | 2022 | 35182630 |
| 2047 | 18 | 0.9993 | Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. OBJECTIVES: To characterize and subtype multidrug-resistant Salmonella isolates by determining the virulence factors, prophage sequences and antimicrobial resistance genes using a novel Salmonella-specific oligonucleotide microarray. METHODS: Preliminary screening of 24 Salmonella clinical isolates was carried out by using susceptibility testing, plasmid profiling and class 1 integron PCR. Subsequently, oligonucleotide microarray was involved in genotypic characterization and localization of monitored genetic markers. The presence of antimicrobial resistance genes was also detected and confirmed by PCR and subsequent sequencing. The potential spread of emerging bla(SHV-2) was investigated by bacterial conjugation. RESULTS: All Salmonella strains revealed resistance to two or more (up to nine) antibiotics. Nineteen of them carried class 1 integrons including dfrA1, dfrA12, aadA1, aadA2, bla(PSE-1) and bla(TEM-1) gene cassettes, respectively. Twenty-three out of 24 Salmonella isolates possessed one or more plasmids. Oligonucleotide microarray characterization and typing revealed the conserved character of Salmonella pathogenicity island virulence factors among three Salmonella enterica serovars, significant variability in prophage sequences and many different antimicrobial resistance gene patterns. Differential labelling of genomic and plasmid DNA, respectively, and hybridization to the microarray made it possible to localize important resistance determinants. Microarray results were successfully confirmed and verified by using PCR. The emerging bla(SHV-2) gene from Salmonella Kentucky SK10944 conferring resistance to ceftriaxone and cefotaxime was transferred via bacterial conjugation to Escherichia coli K-12 3110. CONCLUSIONS: Salmonella isolates were quickly and thoroughly characterized by a novel oligonucleotide microarray, which could become a useful tool for detection of virulence and resistance genes and monitoring of their dissemination among salmonellae and closely related bacteria. | 2007 | 17897936 |
| 1637 | 19 | 0.9993 | Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR. | 2025 | 40482361 |