# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2462 | 0 | 1.0000 | Genetic diversity, virulence factors and drug resistance of Pantoea strains isolated from samples of fresh fruits, vegetables and soil. INTRODUCTION: Pantoea is a genus of Gram-negative bacteria from the Erwiniaceae family. These bacteria are opportunistic human pathogens which are widely distributed in plants and soil. This study aimed to reveal the genetic diversity of Pantoea isolates from food and soil, characterise them biochemically and evaluate their drug resistance. MATERIAL AND METHODS: Thirty Pantoea strains were isolated from fresh fruit (n = 2), fresh and minimally processed vegetables (n = 12) and soil samples (n = 16). The genomic DNA was isolated from cultures on nutrient agar, and species were identified by amplification of 16S ribosomal RNA and housekeeping gene fragments and confirmed by sequencing. Virulence gene presence was determined by amplification of the hcp (haemolysin-coregulated protein), vgrG (glycine-valine repeat sequence G), acrA (anti-clustered regularly interspaced short palindromic repeat protein A) and acrB genes. Isolate drug resistance was tested using the disc-diffusion and gradient strip methods. The presence of Ambler class C (AmpC) β-lactamase (βL) and extended-spectrum (ES) βL resistance genes was tested for. RESULTS: Five species were identified: P. agglomerans (n = 24), P. ananatis (n = 1), P. eucalypti (n = 1), P. conspicua (n = 1) and P. vagans (n = 2). The hcp and vrgG virulence genes were detected in 7 and 1 strain, respectively. All strains showed high resistance to cephazolin and cephuroxime, and more than half did so to ampicillin. The production of AmpC βL and ESβL was confirmed in 22 and 25 strains, respectively. Three strains of the Pantoea bacteria, including P. ananatis from leeks and P. agglomerans from arugula and soil, showed resistance to three or more antimicrobial classes. CONCLUSION: Pantoea spp., including multidrug-resistant strains, in fresh foods pose a potential risk of infection to consumers. | 2025 | 41064409 |
| 1695 | 1 | 0.9995 | Presence of the blaTEM Gene in Commensal Neisseria spp.: A Possible Cause for the Acquired Drug Resistance Among Pathogenic Respiratory Bacteria. Background The oral microbiome consists of various bacterial genera, with Neisseria spp. being a prominent part of this niche. While Neisseria gonorrhoeae and Neisseria meningitidis are human-restricted pathogens, non-pathogenic Neisseria species like Neisseria sicca, Neisseria perflava, etc., are primarily commensals that can also behave as opportunistic pathogens. With increasing penicillin resistance in commensal Neisseria, there is a concern that these bacteria might harbor resistance genes that can be transferred to other pathogens. This study aimed to characterize the blaTEM gene (encodes for the plasmid-mediated β-lactamase enzyme that hydrolyzes the β-lactam ring) of commensal Neisseria spp. isolated from respiratory samples. Methodology The research was conducted in the Department of Clinical Microbiology at Sri Ramachandra University, Chennai. The specimens used were sputum and throat swabs, which were subjected to a series of phenotypic methods and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) for speciation. The antibiogram was determined using the Kirby-Bauer disk diffusion method, and a PCR assay was utilized to identify the blaTEM( )gene responsible for β-lactamase production. Results Out of 274 processed samples, 65 unique commensal Neisseria spp. were identified. The study highlighted the presence of the blaTEM gene in 93.9% (61) of the isolates, which is responsible for β-lactamase production. All isolates exhibited resistance to penicillin. Most blaTEM-positive commensal Neisseria spp. were susceptible to cefuroxime (83.6%), ceftriaxone (85.2%), and cefotaxime (85.2%). The high prevalence of the blaTEM gene in commensal Neisseria is alarming. The gene, found on plasmids, could potentially transfer to other related species like Neisseria gonorrhoeae and Neisseria meningitidis, as well as other Gram-negative bacilli. Conclusion The presence of resistance genes in commensal bacteria is of concern, as they might be reservoirs for resistance transfer to pathogenic strains. The study emphasizes the importance of continuous monitoring and deeper investigations into commensal bacteria, emphasizing the need for a broader community screening approach to understand resistance mechanisms in the normal microbiome. | 2023 | 38146567 |
| 1696 | 2 | 0.9995 | Assessment of the presence of Acinetobacter spp. resistant to β-lactams in commercial ready-to-eat salad samples. Acinetobacter baumannii is a well-known nosocomial infection causing agent. However, other Acinetobacter spp. have also been implicated in cases of human infection. Additionally, these bacteria are known for the development of antibiotic resistance thus making the treatment of the infections they cause, challenging. Due to their relevance in clinical setups less attention has been paid to their presence in foods, and its relation with infection/dissemination routes. In the current study commercial Ready-To-Eat (RTE) salads were analyzed seeking for antibiotic resistant Acinetobacter spp. A preliminary screening allowed us to recover Gram-negative bacteria resistant to β - lactams using cefotaxime, third generation cephalosporins, as the selective agent, and this was followed by identification with CHROMagar™ Acinetobacter and 16S rDNA sequencing. Finally, the isolates identified as Acinetobacter spp. were reanalyzed by PCR to determine the presence of nine potential Extended Spectrum β Lactamases (ESBL). Two commercial RTE salad brands were included in the study (2 batches per brand and 8 samples of each batch making a total of 32 independent samples), and compared against an organic lettuce. High concentrations of β - lactam, resistant bacteria were found in all the samples tested (5 log CFU/g). Additionally, 209 isolates were phenotypically characterized on CHROMagar Acinetobacter. Finally, PCR analysis identified the presence of different ESBL genes, being positive for blaACC, blaSHV, blaDHA and blaVEB; out of these, blaACC was the most prevalent. None of the isolates screened were positive for more than one gene. To conclude, it is important to highlight the fact that pathogenic species within the genus Acinetobacter spp., other than A. baumannii, have been identified bearing resistance genes not typically associated to these microorganisms highlight the importance of continuous surveillance. | 2024 | 38049272 |
| 2040 | 3 | 0.9995 | Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla (TEM) in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla (CTX-M) group 1 (n=1), bla (CTX-M) group 9 (n=2), bla (TEM) (n=2), bla (SHV) (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community. | 2021 | 33997613 |
| 1648 | 4 | 0.9995 | Molecular characterization of the multi-drug resistant Myroides odoratimimus isolates: a whole genome sequence-based study to confirm carbapenem resistance. The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for bla(KPC), bla(OXA), bla(VIM), bla(IMP), bla(MUS), bla(TUS), bla(NDM), and bla(B) genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the bla(MUS-1) gene. WGS identified bla(MUS-1), erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections. | 2024 | 38127105 |
| 2414 | 5 | 0.9995 | Isolation and characterization of multidrug resistant Gallibacterium anatis biovar haemolytica strains from Polish geese and hens. Gallibacterium anatis biovar haemolytica is a bacterium that is frequently associated with infections of the reproductive tract and respiratory system in poultry. To assess the current prevalence and resistance profile of these bacteria in Poland, we collected and investigated 63 strains of Gallibacterium from diseased domestic poultry flocks including geese, laying hens, breeding hens and an ornamental hen. Detailed characterization of the isolates included the analysis of phenotypic antimicrobial resistance profiles and biofilm formation ability. Furthermore, the genetic background of 40 selected isolates regarding the presence of virulence and antimicrobial resistance genes and mobile genetic elements was determined. All investigated isolates were multidrug resistant, most prominently to β-lactams, fluoroquinolones, sulfonamides and macrolides. A total of 48 different resistance profiles were detected. Of all isolates, 50.8% formed a strong biofilm, where strains isolated from geese appeared to be better at biofilm formation than strains isolated from laying and breeding hens. Single-nucleotide polymorphism genotyping revealed that G. anatis bv. haemolytica strains are restricted in host and geographical distribution, and the geese isolates showed greater phylogenetic similarity. Whole genome sequencing enabled identification of 25 different antimicrobial resistance determinants. The most common resistance genes were tetB, bla(ROB-1), and bla(TEM-1) which may be located on mobile genetic elements. All isolates possessed the toxin gene gtxA, and the fimbrial gene flfA was identified in 95% of strains. Our results indicated that all G. anatis bv. haemolytica isolates showed multidrug resistant phenotypes. Strains isolated from geese were characterized by the highest percentage of isolates resistant to selected antimicrobials, probably reflecting host-related adaptations. | 2023 | 37612766 |
| 1647 | 6 | 0.9995 | Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The bla(CTX-M-15) gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria. | 2020 | 31279801 |
| 1621 | 7 | 0.9995 | Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment. | 2021 | 34451523 |
| 2047 | 8 | 0.9995 | Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. OBJECTIVES: To characterize and subtype multidrug-resistant Salmonella isolates by determining the virulence factors, prophage sequences and antimicrobial resistance genes using a novel Salmonella-specific oligonucleotide microarray. METHODS: Preliminary screening of 24 Salmonella clinical isolates was carried out by using susceptibility testing, plasmid profiling and class 1 integron PCR. Subsequently, oligonucleotide microarray was involved in genotypic characterization and localization of monitored genetic markers. The presence of antimicrobial resistance genes was also detected and confirmed by PCR and subsequent sequencing. The potential spread of emerging bla(SHV-2) was investigated by bacterial conjugation. RESULTS: All Salmonella strains revealed resistance to two or more (up to nine) antibiotics. Nineteen of them carried class 1 integrons including dfrA1, dfrA12, aadA1, aadA2, bla(PSE-1) and bla(TEM-1) gene cassettes, respectively. Twenty-three out of 24 Salmonella isolates possessed one or more plasmids. Oligonucleotide microarray characterization and typing revealed the conserved character of Salmonella pathogenicity island virulence factors among three Salmonella enterica serovars, significant variability in prophage sequences and many different antimicrobial resistance gene patterns. Differential labelling of genomic and plasmid DNA, respectively, and hybridization to the microarray made it possible to localize important resistance determinants. Microarray results were successfully confirmed and verified by using PCR. The emerging bla(SHV-2) gene from Salmonella Kentucky SK10944 conferring resistance to ceftriaxone and cefotaxime was transferred via bacterial conjugation to Escherichia coli K-12 3110. CONCLUSIONS: Salmonella isolates were quickly and thoroughly characterized by a novel oligonucleotide microarray, which could become a useful tool for detection of virulence and resistance genes and monitoring of their dissemination among salmonellae and closely related bacteria. | 2007 | 17897936 |
| 2042 | 9 | 0.9995 | Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, bla(CTX-M15) and bla(TEM-1), whereas one isolate harbored an additional ESBL, bla(OXA-1). All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli. | 2020 | 31509034 |
| 5600 | 10 | 0.9995 | The Characterization and Beta-Lactam Resistance of Staphylococcal Community Recovered from Raw Bovine Milk. Staphylococci is an opportunistic bacterial population that is permanent in the normal flora of milk and poses a serious threat to animal and human health with some virulence factors and antibiotic-resistance genes. This study was aimed at identifying staphylococcal species isolated from raw milk and to determine hemolysis, biofilm, coagulase activities, and beta-lactam resistance. The raw milk samples were collected from the Düzce (Türkiye) region, and the study data represent a first for this region. The characterization of the bacteria was performed with MALDI-TOF MS and 16S rRNA sequence analysis. The presence of coa, icaB, blaZ, and mecA was investigated with PCR. A nitrocefin chromogenic assay was used for beta-lactamase screening. In this context, 84 staphylococci were isolated from 10 different species, and the dominant species was determined as S. aureus (32.14%). Although 32.14% of all staphylococci were positive for beta hemolysis, the icaB gene was found in 57.14%, coa in 46.42%, mecA in 15.47%, and blaZ in 8.33%. As a result, Staphylococcus spp. strains that were isolated from raw milk in this study contained some virulence factors at a high level, but also contained a relatively low level of beta-lactam resistance genes. However, considering the animal-environment-human interaction, it is considered that the current situation must be monitored constantly in terms of resistance concerns. It must not be forgotten that the development of resistance is in constant change among bacteria. | 2023 | 36978423 |
| 2965 | 11 | 0.9995 | Detection of antimicrobial resistance genes in Lactobacillus spp. from poultry probiotic products and their horizontal transfer among Escherichia coli. The study was conducted to identify the antimicrobial resistance genes (ARGs) in Lactobacillus spp. from poultry probiotic products and their potential to spread among Escherichia coli. Lactobacillus spp. were isolated and identified from 35 poultry probiotic samples based on the cultural, biochemical, and molecular findings. All the isolates (n = 35) were screened for the presence of some ARGs such as β-lactamases encoding genes (blaTEM, blaCTXM-1, and blaCTXM-2), plasmid-mediated quinolone resistance gene (qnrA, qnrB, and qnrS), and tetracycline resistance genes (tetA and tetB). Five Lactobacillus spp. isolates from three brands were positive for one or more ARGs. The qnrS was detected in four isolates. The blaTEM and tetB were detected in two isolates. One isolate contained blaCTX-M-1, blaCTX-M-2, and tetA genes. Brand-wise analysis revealed that one isolate from Brand 4 contained blaTEM, blaCTX-M-1, blaCTX-M-2, qnrS, and tetA genes, one isolate from Brand 2 contained blaTEM gene, and three isolates from Brand 7 harbored qnrS gene. The co-culture of Lactobacillus spp. and E. coli resulted in the transmission of qnrS, CTX-M-1, and tetA from Lactobacillus spp. to E. coli. Results of antimicrobial susceptibility test revealed that the highest resistance was observed to cefepime and cefotaxime followed by penicillin G, oxacillin, cefuroxime, and ofloxacin. The findings of the present study indicate the potential risk of horizontal spread of antimicrobial resistance through probiotic bacteria among the poultry population. Therefore, it is very necessary to check for ARGs along with other attributes of probiotic bacteria to avoid the inclusion of resistant strains in probiotics. | 2023 | 36942055 |
| 5567 | 12 | 0.9995 | Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria. | 2015 | 26579536 |
| 1694 | 13 | 0.9995 | Antimicrobial resistance of Enterobacter cloacae complex isolates from the surface of muskmelons. The increasing antimicrobial resistance (AMR) among pathogenic and opportunistic pathogenic microorganisms is one of the main global public health problems. The consumption of food contaminated with such bacteria (ARB), especially of raw products, might result in the direct acquisition of ARB and in a spread of resistant bacteria along the food chain. The aim of the study was to characterize the antimicrobial susceptibility of potentially extended spectrum β-lactamase (ESBL) producing or AmpC resistant Enterobacteriaceae isolated from the surface of 147 muskmelons from wholesale and retail. A phenotypic analysis was carried out by using minimum inhibitory concentration (MIC) test strips for ESBL detection and MIC susceptibility plates against 14 antimicrobials. Furthermore, ESBL genes, sul-genes and plasmid-mediated AmpC resistance were analyzed by real-time PCR. Additionally, a further insight in the AmpC resistance of isolates of the Enterobacter cloacae complex (ECC) was obtained by analyzing the sequence of the ampC regulatory region (n = 15). A total of 73 potentially resistant Enterobacteriaceae were isolated from 56 muskmelons. Of these, 15 isolates of the ECC were suspicious for ESBL/AmpC resistance, and eleven thereof were positive for the AmpC family EBC. Phenotypic analysis showed diminished susceptibility against "critically" and "highly important" antimicrobials, according to the WHO classification. Furthermore, divergence in the ampC regulatory region was detected between the 15 isolates. These findings highlight the important role that raw produce might play in the transmission of antimicrobial resistances along the food chain. | 2019 | 31071501 |
| 5533 | 14 | 0.9995 | Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. INTRODUCTION: Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES: This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS: Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS: A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION: Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources. | 2023 | 37208603 |
| 2677 | 15 | 0.9994 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 1709 | 16 | 0.9994 | High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health. | 2016 | 27392282 |
| 1622 | 17 | 0.9994 | Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria. | 2021 | 34943653 |
| 1615 | 18 | 0.9994 | Evaluation of the Antibiotic Resistance and Virulence of Escherichia coli Strains Isolated from Chicken Carcasses in 2007 and 2013 from Paraná, Brazil. The frequent use of antimicrobials in commercial poultry production has raised concerns regarding the potential impact of antimicrobials on human health due to selection for resistant bacteria. Several studies have reported similarities between extraintestinal pathogenic Escherichia coli (ExPEC) strains isolated from birds and humans, indicating that these contaminant bacteria in poultry may be linked to human disease. The aim of our study was to analyze the frequency of antimicrobial resistance and virulence factors among E. coli strains isolated from commercial chicken carcasses in Paraná, Brazil, in 2007 and 2013. A total of 84 E. coli strains were isolated from chicken carcasses in 2007, and 121 E. coli strains were isolated in 2013. Polymerase chain reaction was used to detect virulence genes (hlyF, iss, ompT, iron, and iutA) and to determine phylogenetic classification. Antimicrobial susceptibility testing was performed using 15 antimicrobials. The strains were also confirmed as extended-spectrum β-lactamase (ESBL)-producing E. coli with phenotypic and genotypic tests. The results indicated that our strains harbored virulence genes characteristic of ExPEC, with the iutA gene being the most prevalent. The phylogenetic groups D and B1 were the most prevalent among the strains isolated in 2007 and 2013, respectively. There was an increase in the frequency of resistance to a majority of antimicrobials tested. An important finding in this study was the large number of ESBL-producing E. coli strains isolated from chicken carcasses in 2013, primarily for the group 2 cefotaximase (CTX-M) enzyme. ESBL production confers broad-spectrum resistance and is a health risk because ESBL genes are transferable from food-producing animals to humans via poultry meat. These findings suggest that our strains harbored virulence and resistance genes, which are often associated with plasmids that can facilitate their transmission between bacteria derived from different hosts, suggesting zoonotic risks. | 2015 | 25974222 |
| 2329 | 19 | 0.9994 | Antibiotic resistance and genotyping of clinical group B Salmonella isolated in Accra, Ghana. AIMS: The purpose of this study was to investigate the antibiotic resistance and clonal lineage of serogroup B Salmonella isolated from patients suspected of suffering from enteric fever in Accra, Ghana. METHODS AND RESULTS: Serogroup B Salmonella were isolated from blood (n=28), cerebral spinal fluid (CSF) (n=1), or urine (n=2), and identified based on standard biochemical testing and agglutinating antisera. Isolates were examined for their susceptibility to ampicillin, chloramphenicol, tetracycline and trimethoprim-sulfamethoxazole. Most of the isolates could be classified as multiple-drug resistant. Furthermore, the genetic location of resistance genes was shown to be on conjugative plasmids. Genetic fingerprinting by plasmid profiling, enterobacterial repetitive intergenic consensus (ERIC)-PCR, and repetitive element (REP)-PCR were performed to determine the diversity among the isolates. Plasmid profiling discriminated five unique groupings, while ERIC-PCR and REP-PCR resulted in two and three groupings, respectively. CONCLUSIONS: A high rate of antibiotic resistance was associated with the Salmonella isolates and the genes responsible for the resistance are located on conjugative plasmids. Also, there appears to be minimal diversity associated with the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: As a result of the increasing antibiotic resistance among bacteria of all genera, surveys to monitor microbial populations are critical to determine the extent of the problem. The inability to treat many infectious diseases with current antibiotic regimens should prompt the medical community to be more prudent with its antibiotic use. | 2003 | 12534821 |