Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
245101.0000Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. Conjugation is a type of horizontal gene transfer (HGT) that serves as the primary mechanism responsible for accelerating the spread of antibiotic resistance genes in Gram-negative bacteria. The present study aimed to elucidate the mechanisms underlying the conjugation-mediated gene transfer from the extensively drug-resistant Acinetobacter baumannii (XDR-AB) and New Delhi Metallo-beta-lactamase-1-producing Acinetobacter baumannii (NDM-AB) to environmental isolates of Acinetobacter spp. Conjugation experiments demonstrated that resistance to ticarcillin and kanamycin could be transferred from four donors to two sodium azide-resistant A. baumannii strains, namely, NU013R and NU015R. No transconjugants were detected on Mueller-Hinton Agar (MHA) plates containing tetracycline. Plasmids obtained from donors as well as successful transconjugants were characterized by PCR-based replicon typing and S1-nuclease pulsed-field gel electrophoresis (S1-PFGE). Detection of antibiotic resistance genes and integrase genes (int) was performed using PCR. Results revealed that the donor AB364 strain can transfer the blaOXA-23 and blaPER-1 genes to both recipients in association with int1. A 240-kb plasmid was successfully transferred from the donor AB364 to recipients. In addition, the aphA6 and blaPER-1 genes were co-transferred with the int1 gene from the donor strains AB352 and AB405. The transfer of a 220-kb plasmid from the donors to recipient was detected. The GR6 plasmid containing the kanamycin resistance gene (aphA6) was successfully transferred from the donor strain AB140 to both recipient strains. However, the blaNDM-1 and tet(B) genes were not detected in all transconjugants. Our study is the first to demonstrate successful in vitro conjugation, which indicated that XDR-AB contained combination mechanisms of the co-transfer of antimicrobial resistance elements with integron cassettes or with the plasmid group GR6. Thus, conjugation could be responsible for the emergence of new types of antibiotic-resistant strains.201830521623
245010.9996Analysis of a novel class 1 integron containing metallo-beta-lactamase gene VIM-2 in Pseudomonas aeruginosa. Carbapenems such as imipenem are stable to most beta-lactamases. Recently, increased numbers of carbapenemase producing Gram-negative bacterial strains have been isolated because of the increased use of cabapenems. In this respect, control of these infectious carbapenemase producing Gram-negative bacteria and understanding their resistance mechanism are becoming more important. These carbapenem-hydrolyzing beta-lactamase genes have been reported to exist mostly as gene cassettes in an integron. This implies that antibiotic resistance genes may be transferred to other bacteria via the integron. In the present study, we identified and analyzed an integron containing VIM-2 type metallo-beta-lactamase gene in a carbapenemase producing Pseudomonas aeruginosa. In addition, the possibility of resistance spread by integron located in a plasmid was tested. Among glucose non-fermenting Gram-negative bacilli with reduced imipenem susceptibility (MIC > or = 8 microg/ml) isolated from Korean patients, P. aeruginosa 1082 showed resistance to most beta-lactams, cephalosporin, and aminoglycoside. We found that P. aeruginosa 1082 was inhibited by EDTA in EDTA double disk synergy test which means that this strain produces metallo-beta-lactamase. Class 1 integron containing bla (VIM-2) (carbapenem resistance gene), qacF (quaternary ammonium compound resistance gene), aacA4 (aminoglycoside resistance gene), catB3 (chloramphenicol resistance gene), bla (oxa-30) (extended-spectrum beta-lactam resistance gene), and aadAl (aminoglycoside resistance gene) gene cassettes was detected in P. aeruginosa 1082. The size of the integron was 5,246 bp and the structure and arrangement of the integron was a novel one in comparison with other integrons found in other P. aeruginosa. The integron could be transferred to Escherichia coli JM109 from P. aeruginosa 1082 possibly via self-transferable plasmid DNA. The integron and a bla (VIM-2) gene were detected in the plasmid DNA of the transconjugants whose imipenem resistance was slightly increased as a result of accepting the integron from the donor strain.200920127470
206920.9995Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. BACKGROUND: Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal bla AmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. FINDINGS: Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of bla CMY-46 and bla CMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-bla CMY-2-type -ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. CONCLUSIONS: This study describes two new bla CMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level.201525885413
158130.9995Large DNA fragment ISEc9-mediated transposition during natural transformation allows interspecies dissemination of antimicrobial resistance genes. PURPOSE: Antimicrobial resistance poses a significant global health challenge, contributing to a lack of effective therapeutic agents, especially against Gram-negative bacteria. Resistance dissemination is accelerated by horizontal gene transfer (HGT) mechanisms. The extended-spectrum beta lactamases CTX-M confer resistance to several beta-lactams, are usually embedded into plasmids and thought to be mainly disseminated by conjugation. However, an increasing number of isolates carry these enzyme-encoding genes in the chromosome, suggesting that they can spread by other means of HGT. In this study, we aimed to test the involvement of natural transformation in the chromosomal acquisition of a bla(CTX-M) gene. METHODS: Natural transformation assays were performed during motility on wet surfaces. Acquisition of foreign DNA by transformants was screened by antimicrobial susceptibility testing, polymerase-chain reaction (PCR) and whole genome sequencing (WGS). RESULTS: Acinetobacter baumannii A118, a naturally competent clinical strain, was transformed with naked DNA from Salmonella enterica serovar Typhimurium Sal25, which was isolated from swine meat. The transformation occurred at low frequency (2.7 × 10(- 8) ± 2.04 × 10(- 8) transformants per recipient) and bla(CTX-M) was acquired in one transformant, which was named ACI. WGS of the transformant revealed the acquisition of the bla(CTX-M-32) as part of a ca. 36 Kb DNA fragment through an ISEc9-mediated transposition event; various mobile genetic elements and other resistance genes were co-transferred. The bla(CTX-M-32) gene was subsequently transferred within A. baumannii at a higher frequency (1.8 × 10(- 6) ± 2.49 × 10(- 6) transformants per recipient). CONCLUSION: Our results highlight the importance of natural transformation events in the dissemination of antimicrobial resistance genes and mobile genetic elements between and within species.202540304893
152040.9995Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. OBJECTIVES: The objective of this study was to characterize colistin-resistant bacteria isolated from pigs on a farm in Great Britain following identification of a plasmid-borne colistin resistance mechanism in Escherichia coli from China. METHODS: Phenotypic antimicrobial susceptibility testing was undertaken by broth dilution and WGS was performed to detect the presence of genes encoding resistance and virulence. Transferable colistin resistance was investigated by conjugation. RESULTS: Two E. coli and one Salmonella Typhimurium variant Copenhagen were shown to be MDR, including resistance to colistin, with one E. coli and the Salmonella carrying the mcr-1 gene; all three harboured chromosomal mutations in genes conferring colistin resistance and both E. coli harboured β-lactamase resistance. The Salmonella mcr-1 plasmid was highly similar to pHNSHP45, from China, while the E. coli mcr-1 plasmid only had the ISApII and mcr-1 genes in common. The frequency of mcr-1 plasmid transfer by conjugation to recipient Enterobacteriaceae from Salmonella was low, lying between 10(-7) and 10(-9) cfu/recipient cfu. We were unable to demonstrate mcr-1 plasmid transfer from the E. coli. Plasmid profiling indicated transfer of multiple plasmids from the Salmonella resulting in some MDR transconjugants. CONCLUSIONS: Identification of the mcr-1 gene in Enterobacteriaceae from pigs confirms its presence in livestock in Great Britain. The results suggest dissemination of resistance through different horizontally transferable elements. The in vitro transfer of multiple plasmids carrying colistin and other resistances from the Salmonella isolate underlines the potential for wider dissemination and recombination.201627147305
189850.9995Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Multiple-replicon resistance plasmids have become important carriers of resistance genes in Gram-negative bacteria, and the evolution of multiple-replicon plasmids is still not clear. Here, 56 isolates of Klebsiella isolated from different wild animals and environments between 2018 and 2020 were identified by phenotyping via the micro-broth dilution method and were sequenced and analyzed for bacterial genome-wide association study. Our results revealed that the isolates from non-human sources showed more extensive drug resistance and especially strong resistance to ampicillin (up to 80.36%). The isolates from Malayan pangolin were particularly highly resistant to cephalosporins, chloramphenicol, levofloxacin, and sulfamethoxazole. Genomic analysis showed that the resistance plasmids in these isolates carried many antibiotic resistance genes. Further analysis of 69 plasmids demonstrated that 28 plasmids were multiple-replicon plasmids, mainly carrying beta-lactamase genes such as bla (CTX-M-) (15), bla (CTX-M-) (14), bla (CTX-M-) (55), bla (OXA-) (1), and bla (TEM-) (1). The analysis of plasmids carried by different isolates showed that Klebsiella pneumoniae might be an important multiple-replicon plasmid host. Plasmid skeleton and structure analyses showed that a multiple-replicon plasmid was formed by the fusion of two or more single plasmids, conferring strong adaptability to the antibiotic environment and continuously increasing the ability of drug-resistant isolates to spread around the world. In conclusion, multiple-replicon plasmids are better able to carry resistance genes than non-multiple-replicon plasmids, which may be an important mechanism underlying bacterial responses to environments with high-antibiotic pressure. This phenomenon will be highly significant for exploring bacterial resistance gene transmission and diffusion mechanisms in the future.202134777312
273260.9995Biofilms in hospital effluents as a potential crossroads for carbapenemase-encoding strains. Bacterial resistance to carbapenem, which is mainly due to the successful dissemination of carbapenemase-encoding genes, has become a major health problem. Few studies have aimed to characterize the level of resistance in the environment, notably in hospital wastewater, which is a likely hotspot for exchange of antibiotic resistance genes. In this work, we looked for the presence of imipenem-resistant bacteria and imipenem in the effluent of the teaching hospital of Clermont-Ferrand, France. Selective growth of bacteria from 14-day old biofilms formed in the pipe sewer showed that 22.1% of the isolates were imipenem-resistant and identified as Aeromonas (n = 23), Pseudomonas (n = 10), Stenotrophomonas (n = 4) and Acinetobacter (n = 1). Fifteen of these strains harbored acquired carbapenemase-encoding genes bla(VIM) (n = 11), bla(OXA-48) (n = 2), bla(GES) (n = 1), bla(NDM) (n = 1). All isolates also harbored associated resistances to aminoglycosides, fluoroquinolones and/or tetracyclin. S1-nuclease pulsed-field gel electrophoresis analysis of eight selected isolates showed that four of them harbored one to two plasmids of molecular weight between 48.5 Kb and 194 Kb. In vitro transformation assays evidenced the presence of bla(VIM) and bla(NDM) on plasmids with the bla(VIM) harboring 80 Kb plasmid having conjugative capacity. The predicted environmental concentration of imipenem in the hospital effluent was 3.16 μg/L, suggesting that biofilm bacteria are subjected to sub-MICs of imipenem within the effluent. However, no imipenem molecule was detected in the hospital effluent, probably owing to its instability: in vitro assays indicated that imipenem's biological activity was no longer detectable after 45 h of storage. However, the predictive value of the hazard quotient relative to the development of resistance was >1.0 (HQr = 28.9 ± 1.9), which indicates a possible risk. The presence of carbapenemase-encoding genes in hospital effluent biofilm strains and their ability to transfer are therefore a potential hazard that should not be neglected and points to the need for monitoring antibiotic resistance in hospital wastewater.201930530220
189970.9995Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141
592480.9995In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Transfer of resistance genes from bacteria from food producing animals to human pathogens is a potential risk to human health. The aim of this study was to determine in vivo transfer of a plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to Escherichia coli and the influence of the use of antimicrobials on this transfer. Thirty four-day-old SPF chickens colonized with E. coli K12 were divided into 3 groups of 10 animals each, and placed in separate isolators. Eleven days after inoculation with E. coli K12 the chickens were inoculated orally with 10(4)CFU of S. enterica spp. enterica serovar Typhimurium containing a plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Two days after the administration of S. Typhimurium 1 group was treated orally with doxycycline, 1 group orally with trimethoprim/sulphamethoxazole and 1 group remained untreated (control group). E. coli K12, S. Typhimurium and the transconjugants were isolated from cloacal samples on selective MacConkey agar plates. Transfer of the plasmid was confirmed by plasmid characterization, PCR, PFGE and hybridization. Plasmid mediated transfer of a class 1 integron was observed almost immediately after inoculation with S. Typhimurium. Treatment of the chickens with antibiotics had neither a positive nor a negative effect on the transfer rates. In addition to the resistance genes located on the integron, resistance genes encoding for tetracycline and amoxicillin resistance transferred from the donor strain as well. The resistance genes and the integron were located on a 130 kb sized IncFIB plasmid. Our data demonstrate in vivo transfer of an IncFIB plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to E. coli, with or without selective pressure of antibiotics in chickens.200919264430
151990.9995Epidemiology and resistance mechanisms of tigecycline- and carbapenem-resistant Enterobacteriaceae in China: a multicentre genome-based study. OBJECTIVES: To elucidate the molecular epidemiology of tigecycline and carbapenem-resistant Enterobacteriaceae isolates and mechanisms of tigecycline resistance. METHODS: We gathered 31 unduplicated strains of tigecycline-resistant Enterobacteriaceae from six hospitals nationwide. Antimicrobial susceptibility testing, phenotypic detection, and PCR identification were performed first, followed by homology analysis using MLST and PFGE. Conjugation transfer experiments using resistance gene plasmids were carried out, and the conjugates' growth curves were examined. All strains were sequenced using the Illumina HiSeq technology, and we identified a strain KP28 carrying a complete gene cluster tmexCD2-toprJ2. Then, its plasmid was further constructed using the PacBio platforms to complete the frame. The genetic connection of the tmexCD2-toprJ2 gene cluster carried by KP28 was established using core genome analyses. RESULTS: All 31 tigecycline-resistant Enterobacteriaceae strains (TG-CRE) were multidrug resistant. PFGE classified strains of CRKP, CRECL, and CRKAE into 16 distinct spectra, 6 distinct spectra, and 3 distinct spectra. MLST results showed a high concentration of ST11 in CRKP strains and a predominance of ST116 in CRECL strains, suggesting possible clonal transmission or selective dominance. The findings of the plasmid conjugation assay revealed that three strains expressing carbapenem resistance genes were effectively transmitted to the recipient cell E. coli EC600. WGS data revealed that these 31 strains include 79 resistance genes, with one strain (KP28) carrying the whole tigecycline resistance gene cluster, tmexC2D2-toprJ2. This resistance gene is contained in a large IncHI5 plasmid, which is difficult to transfer. CONCLUSION: The overall carriage rate of the tmexC2D2-toprJ2 gene cluster was found to be low among the five Chinese hospitals investigated. Conversely, tet(A) mutations were present in most of the strains. Bacteria with the carbapenem resistance genes bla (KPC) and bla (NDM) are vulnerable to horizontal transmission. Increasing the risk of transmission of antibiotic-resistant genes.202540400686
2062100.9995Expulsion of plasmid-mediated antibiotic resistance genes in E. coli by ethidium bromide and acridine orange treatment. Plasmid borne antibiotics resistance is the global threat to healthcare facilities. Such antibiotics resistance is inherited stably within the same bacterial generations and transmitted horizontally to other species of bacteria. The elimination of such resistance plasmid is of great importance to contain dispersal of antibiotics resistance. E. coli strains were identified, screened for the presence of antibiotics resistance by disc diffusion method, and cured by sub-lethal concentrations of Ethidium bromide and Acridine orange. After curing, again antibiotic resistance was determined. Before and after curing, plasmids were extracted by column spin Kit and subjected to 1% agarose gel electrophoresis and antibiotic resistance genes were identified by PCR. The Ethidium bromide was more effective than Acridine orange in eliminating antibiotics resistance and resistance genes bearing plasmids (4, 5, 6, 8, 9, 10 and <10kb). The most frequently eliminated antibiotic resistance was against Imipenem and Meropenem followed by Cefoperazone-sulbactam, Amikacin and cephalosporins in sequence. The loss of antibiotic resistance was associated with the elimination of plasmid-borne antibiotic resistance genes; bla-TEM, bla-SHV, bla-CTX-M, qnrA, qnrB, qnrC and qnrD. Some E. coli strains did not show the removal of antibiotics resistance and plasmids, suggesting the presence of resistance genes on main chromosome and or non-curable plasmids.202337548194
1773110.9995Detection of SXT/R391 integrative conjugative elements carrying tigecycline resistance genes in Shewanella spp. isolated from retail seafood. Tigecycline is a last resort antibiotic that is used to treat serious infections; however, some bacteria have developed tigecycline resistance by producing a tigecycline-inactivating enzyme or tigecycline resistance efflux pump, encoded by tet(X) and tmexCD-toprJ genes, respectively. Tons of seafood are consumed annually in China; however, whether seafood harbors tigecycline-resistant bacteria is not known. In this study, we isolated various tigecycline-resistant bacteria from retail seafood; among these, Shewanella was the predominant tigecycline-resistant genus (33/76, 43.4%). Genomic sequencing revealed that two Shewanella strains carried the tet(X4) gene, while one Shewanella chilikensis strain co-harbored tmexCD2-toprJ2 and bla(NDM-1) genes. The tet(X4) and tmexCD2-toprJ2 were found to be located on novel members of the SXT/R391 family of integrated conjugative elements (ICEs). As per our knowledge, this is the first report on the emergence of SXT/R391 ICEs carrying tet(X4) or tmexCD2-toprJ2 gene in Shewanella strains. The SXT/R391 family ICEs could mediate the spread of tigecycline resistance genes among aquatic bacteria, and contact between seafood and consumers may lead to the dissemination of tigecycline-resistant bacteria. Our study revealed that Shewanella spp. may act as potential reservoirs of tigecycline resistance genes.202540569748
2082120.9995Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. A screening technique for integrons in members of the family Enterobacteriaceae and nonfermenting gram-negative bacteria by real-time PCR is reported. A total of 226 isolates of gram-negative bacteria obtained from a variety of clinical specimens were screened for class 1 integrons by real-time PCR performed on a LightCycler instrument. This technique used a primer pair specific for a 300-bp conserved region at the 5' ends of class 1 integrons. The screening assay was evaluated by comparison with results obtained by the conventional, thermal-block PCR (long PCR) by using established conditions and primers for the detection of class 1 integrons, and the real-time PCR technique was thus shown to be both sensitive and specific. DNA from 50 of 226 (22%) isolates screened was identified as containing an integron by the screening PCR, and sequence data were obtained across the integron for 34 of 50 (68%) of these isolates. In an attempt to study the molecular epidemiology of antimicrobial resistance genes carried within integrons, a comparison of the types of gene cassettes carried by isolates from different patients was made. Adenyltransferase genes conferring resistance to streptomycin and spectinomycin were the predominant gene cassettes amplified in the study. Resistance to trimethoprim was also frequently found to be encoded within integrons. Furthermore, multiple bacterial isolates obtained from one patient over a 5-month period were all shown to carry an integron containing the same single adenyltransferase gene cassette, suggesting that these elements were relatively stable in this case.200111257011
2075130.9995Identification and Genetic Characterization of Conjugative Plasmids Encoding Coresistance to Ciprofloxacin and Cephalosporin in Foodborne Vibrio spp. Plasmid-mediated quinolone resistance (PMQR) determinants, such as qnrVC genes, have been widely reported in Vibrio spp. while other types of PMQR genes were rarely reported in these bacteria. This study characterized the phenotypic and genotypic features of foodborne Vibrio spp. carrying qnrS, a key PMQR gene in Enterobacteriaceae. Among a total of 1,811 foodborne Vibrio isolates tested, 34 (1.88%) were found to harbor the qnrS gene. The allele qnrS2 was the most prevalent, but coexistence with other qnr alleles was common. Missense mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes were only found in 11 of the 34 qnrS-bearing isolates. Antimicrobial susceptibility tests showed that all 34 qnrS-bearing isolates were resistant to ampicillin and that a high percentage also exhibited resistance to cefotaxime, ceftriaxone, and trimethoprim-sulfamethoxazole. Genetic analysis showed that these phenotypes were attributed to a diverse range of resistance elements that the qnrS-bearing isolates harbored. The qnrS2 gene could be found in both the chromosome and plasmids; the plasmid-borne qnrS2 genes could be found on both conjugative and nonconjugative plasmids. pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of phenotypic resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would speed up the emergence of multidrug-resistant (MDR) pathogens that are resistant to the most important antibiotics used in treatment of Vibrio infections, suggesting that close monitoring of emergence and dissemination of MDR Vibrio spp. in both food samples and clinical settings is necessary. IMPORTANCE Vibrio spp. used to be very susceptible to antibiotics. However, resistance to clinically important antibiotics, such as cephalosporins and fluoroquinolones, among clinically isolated Vibrio strains is increasingly common. In this study, we found that plasmid-mediated quinolone resistance (PMQR) genes, such as qnrS, that have not been previously reported in Vibrio spp. can now be detected in food isolates. The qnrS2 gene alone could mediate expression of ciprofloxacin resistance in Vibrio spp.; importantly, this gene could be found in both the chromosome and plasmids. The plasmids that harbor the qnrS2 gene could be both conjugative and nonconjugative, among which the pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would accelerate the emergence of multidrug-resistant pathogens.202337395663
2074140.9995Drug Resistance and Integron Genes in Escherichia coli Isolated from Urinary Tract Infection. Escherichia coli (E. coli) is a major cause of urinary tract infections. Treatment of these infections with antibiotics is often not effective due to the acquisition of drug-resistance genes by the bacteria. This process is mediated by integrons which belong to bacterial mobile genetic elements. Therefore, the present study addressed the issue of the relation between antibiotic resistance and integron genes in E. coli isolated from patients affected by urinary tract infection. Multiplex PCR assay employed to detect the E. coli integrase gene demonstrated that out of 49 bacterial strains, 26 were carrying class 1 integron and there was no case of bacteria harboring class 2 or class 3 integrons. Correlation analysis documented that E. coli strains harboring class 1 integron exhibited higher resistance towards tobramycin. The variable region gene cassette contained combinations of four genes responsible for antibiotic resistance: dfr17, aadA2, aadA5, and aac(6')-Ib-cr, of which the latter conferred tobramycin resistance. Together, the collected data underscore the need for identification and analysis of integrons in E. coli-induced urinary infections.201930961771
1710150.9995Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. OBJECTIVES: Recent research has demonstrated that natural populations of bacteria carry large numbers of mobile genetic elements that may harbour antibiotic resistance determinants. This study aimed to investigate carbapenem resistance in Gram-negative bacteria isolated from natural environments in Béjaïa (Algeria) and to determine the horizontal gene transfer potential of a subset of these antibiotic resistance genes (ARGs). METHODS: Antibiotic-resistant bacteria were isolated and the host was identified using MALDI-TOF/MS and 16S rRNA sequencing. ARG carriage was investigated by the double-disk synergy test, metallo-β-lactamase (MBL) production test and PCR screening for carbapenemase genes. Conjugation experiments were performed to determine potential ARG mobility. To identify ARGs, genomic libraries were constructed and functionally screened and inserts were sequenced. RESULTS: A total of 62 antibiotic-resistant strains isolated from soil and water samples were classified as belonging to the Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae and Aeromonadaceae families. Four highly imipenem-resistant (MIC>64μg/mL) and cefotaxime-resistant (MIC>8μg/mL) clinically-relevant strains were selected for further characterisation. All four strains produced extended-spectrum β-lactamases, but MBL production was not confirmed. Imipenem and cefotaxime resistance was transferable to Escherichia coli but was not conferred by bla(AmpC), bla(IMP), bla(NDM), bla(KPC), bla(OXA-48) or bla(GES) genes. Novel putative resistance mechanisms were identified, including a novel DHA β-lactamase conferring clinical resistance to cefotaxime. CONCLUSIONS: The environment is a reservoir of carbapenem-resistant bacteria. Further investigation of the evolution and dissemination of antibiotic resistance in environmental bacteria is required in order to understand and prevent the emergence of resistance in the clinical environment.201830071355
5955160.9995Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
1893170.9995Genetic analysis of the first mcr-1 positive Escherichia coli isolate collected from an outpatient in Chile. Global dissemination of mcr-like genes represents a serious threat to public health since it jeopardizes the effectiveness of colistin, an antibiotic used as a last-resort treatment against highly antibiotic-resistant bacteria. In 2017, a mcr-1-positive isolate of Escherichia coli was found in Chile for the first time. Herein we report the genetic features of this strain (UCO-457) by whole-genome sequencing (WGS) and conjugation experiments. The UCO-457 strain belonged to ST4204 and carried a 285 kb IncI2-type plasmid containing the mcr-1 gene. Moreover, this plasmid was transferred by conjugation to an E. coli J53 strain at high frequency. The isolate harbored the cma, iroN, and iss virulence genes and did carry resistance genes to trimethoprim/sulfamethoxazole and fluoroquinolones. Other antibiotic resistance determinants such as β-lactamases-encoding genes were not detected, making the isolate highly susceptible to these antibiotics. Our results revealed that such susceptible isolates could be acting as platforms to disseminate plasmid-mediated colistin resistance. Based on this evidence, we consider that mcr-like prevalence deserves urgent attention and should be examined not only in highly resistant bacteria but also in susceptible isolates.201931228460
1897180.9994Plasmid-based replicon typing: Useful tool in demonstrating the silent pandemic of plasmid-mediated multi-drug resistance in Enterobacterales. BACKGROUND: Multi-drug resistant Enterobacterales increasingly isolated in hospital settings have a significant impact on therapy and overall treatment costs. Conjugative plasmids carrying relevant resistance genes have been described as the most frequent mechanism of acquisition and spread of resistance. PCR-based replicon typing (PBRT) is a method for plasmid identification and incompatibility typing which helps detect the presence of plasmid families in these bacteria. This study was undertaken to provide an insight into the prevalence of resistance plasmids in MDR Enterobacterales in our tertiary care setting. METHODS: A selection of one hundred multi-drug resistant Enterobacterale isolates sourced from clinical samples were subjected to PCR-based replicon typing. RESULTS: A total of 21 plasmid replicon types were detected from 85% of the isolates out of the 28 families described in literature. Majority of the isolates (54%) showed three or more replicons. IncF was the most frequent plasmid family detected with FIA being the most common replicon type (43%) followed by FII (29%) and FIB (28%) replicons. Among the IncX plasmid family, X3 replicon was the commonest (14%). IncF and IncX plasmid families are known to carry a large spectrum of resistance genes. CONCLUSION: The presence of these plasmids engenders emergent steps to be taken for prevention of their transmission in the form of strict infection control measures in the hospital and adoption of novel methods of plasmid curing to eliminate the plasmids from these organisms rendering them susceptible to the currently used antimicrobials.202540463599
2065190.9994Exogenous plasmid capture to characterize tetracycline-resistance plasmids in sprouts obtained from retail in Germany. This study aimed to characterize antibiotic-resistance plasmids present in microorganisms from sprout samples using exogenous plasmid capture. Fresh mung bean sprouts were predominantly colonized by bacteria from the phyla Proteobacteria and Bacteroidetes. To capture plasmids, a plasmid-free Escherichia (E.) coli CV601 strain, containing a green fluorescent protein gene for selection, was used as the recipient strain in exogenous plasmid capture experiments. Transconjugants were selected on media containing cefotaxime or tetracycline antibiotics. While no cefotaxime-resistant transconjugants were obtained, 40 tetracycline-resistant isolates were obtained and sequenced by Illumina NextSeq short read and Nanopore MinION long read sequencing. Sequences were assembled using Unicycler hybrid assembly. Most of the captured long plasmids carried either the tet(A) or tet(D) resistance gene, belonged to the IncFI or IncFII replicon types, and were predicted as conjugative. While the smaller plasmids contained the tet(A) tetracycline resistance gene as well as additional quinolone (qnrS1), sulfonamide (sul1) and trimethoprim (dfrA1) resistance genes, the larger plasmids only contained the tet(D) resistance gene. An exception was the largest 192 kbp plasmid isolated, which contained the tet(D), as well as sulfonamide (sul1) and streptomycin (aadA1) resistance genes. The smaller plasmid was isolated from different sprout samples more often and showed a 100% identity in size (71,155 bp), while the 180 kbp plasmids showed some smaller or larger differences (in size between 157,683 to 192,360 bp). This suggested that the plasmids obtained from the similar sprout production batches could be clonally related. Nanopore MinION based 16S metagenomics showed the presence of Enterobacter (En.) cloacae, En. ludwigii, En. kobei, Citrobacter (C.) werkmanii, C. freundii, Klebsiella (K.) oxytoca and K. pneumonia, which have previously been isolated from fresh produce in Germany. These bacteria may harbor antibiotic resistance genes on plasmids that could potentially be transferred to similar genera. This study demonstrated that bacteria present in sprouts may act as the donors of antibiotic resistance plasmids which can transfer resistance to other bacteria on this product via conjugation.202540012786