# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2445 | 0 | 1.0000 | Isolation and characterisation of carbapenem-resistant Xanthomonas citri pv. mangiferaeindicae-like strain gir from the faecal material of giraffes. The purpose of this study was to determine if giraffes (Giraffa camelopardalis) living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL were colonised with carbapenem-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to a carbapenem-resistant phenotype. Faecal samples from seven giraffes were examined for carbapenem-resistant bacteria. Only one isolate (a Xanthomondaceae) was found to be carbapenem-resistant by antibiotic susceptibility testing. This isolate was selected for additional characterization, including whole genome sequencing (WGS). Based on average nucleotide identity, the bacterium was identified as Xanthomonas citri pv. mangiferaeindicae-like strain gir. Phenotypic carbapenemase tests and PCR for the most common carbapenemase genes produced negative results, suggesting that carbapenem resistance was mediated by another mechanism. Resistance gene profile analysis of WGS results confirmed these results. Among identified resistance genes, a chromosomal class A beta-lactamase with 71% identity to the penP beta-lactamase gene from Xanthomonas citri ssp. citri was identified, which could contribute to a carbapenem-resistant phenotype. | 2020 | 31485840 |
| 5949 | 1 | 0.9988 | Genetic Features of Antarctic Acinetobacter radioresistens Strain A154 Harboring Multiple Antibiotic-Resistance Genes. While antibiotic-resistant bacteria have been detected in extreme environments, including Antarctica, to date there are no reports of Acinetobacter species isolated from this region. Here, we characterized by whole-genome sequencing (WGS) the genetic content of a single antibiotic-resistant Acinetobacter spp. isolate (A154) collected in Antarctica. The isolate was recovered in 2013 from soil samples at Fildes Peninsula, Antarctica, and was identified by detection of the intrinsic OXA-23 gene, and confirmed by Tetra Correlation Search (TCS) and WGS. The antibiotic susceptibility profile was determined by disc diffusion, E-test, and broth microdilution methods. From WGS data, the acquired resistome and insertion sequence (IS) content were identified by in silico analyses. Plasmids were studied by the alkaline lysis method followed by pulsed-field gel electrophoresis and conventional PCR. The A154 isolate was identified as A. radioresistens by WGS analysis and displayed >99.9 of similarity by TCS in relation with the databases. Moreover, it was resistant to ampicillin, ceftriaxone, ceftazidime, cefepime, cefotaxime, streptomycin, and kanamycin. Likewise, in addition to the intrinsic bla(OXA-23-like) gene, A154 harbored the plasmid-encoded antibiotic-resistance genes bla(PER-2), tet(B), aph(3')-Vla, strA, and strB, as well as a large diversity of ISs. This is the first report of antibiotic-resistant A. radioresistens in Antarctica. Our findings show the presence of several resistance genes which could be either intrinsic or acquired in the region. | 2019 | 31608244 |
| 1693 | 2 | 0.9988 | Major enzymatic factors involved in bacterial penicillin resistance in Burkina Faso. Many clinical species of bacteria were isolated from biological samples such as urines, blood and wound in Saint Camille medical centre of Ouagadougou. Among the concerned species, the most important members were Escherichia coli and Klebsiella pneumoniae. These p-lactamases producing isolates were directly screened by PCR to identify the nature of the amplified genes responsible for penicillin destroying activity. Therefore specific TEM and SHV primers were used. The PCR products were sequenced. The sequencing results indicated that the parental forms bla(TEM-1) and bla(SHV-1) were the most common determinants of beta-lactamase found, respectively in Escherichia species and Klebsiella pneumoniae. The bacterial susceptibility analysis by MICs measurement clearly correlated the presence of concerned beta-lactamase determinants and their resistance patterns. This study is part of a set of investigations carried out by our laboratory to assess the beta-lactamase incidence in the failure of beta-lactam therapy. In particular, the purpose of this study was to determine the precise nature of beta-lactamase supporting the low susceptibility of host bacteria towards penicillins. | 2007 | 19069526 |
| 2051 | 3 | 0.9988 | Plasmid-mediated fluoroquinolone-resistance QnrA and QnrB genes among Escherichia coli from cattle in Ado-Ekiti, Nigeria. OBJECTIVE: This is to investigate the implication of fluoroquinolone usage in veterinary practice and the food chain system. SUBJECTS AND METHODS: Five hundred isolates of commensal E coli were recovered from the faeces of apparently healthy cattle in Ado-Ekiti, Nigeria. The susceptibility of the bacteria was tested using standard laboratory procedures. Polymerase chain reaction (PCR) was carried out to detect the presence of qnrA and qnrB genes, which were selected on the basis of their fluoroquinolone-resistant patterns. RESULTS: The agar disc diffusion technique revealed that the representative isolates showed multiple fluoroquinolone-resistance and this formed the basis for their selection for PCR amplification. The PCR revealed that ten of the 17 quinolone-resistant representative isolates showed distinct bands which are specific for the qnrB gene; in addition, only one strain of the 20 representative isolates of commensal E coli carried plasmids on which the qnrA gene was detected. CONCLUSION: This study has confirmed that plasmid-mediated quinolone resistance is a possible mechanism among the fluoroquinolone-resistant commensal E coli isolated from faeces of apparently healthy cattle in the study location. | 2012 | 23757898 |
| 5987 | 4 | 0.9987 | Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Clinical strains of Stenotrophomonas maltophilia are often highly resistant to multiple antibiotics and this resistance is steadily rising. Quinolones are included in the group of antimicrobial agents to which this microorganism is developing resistance. Therefore, the aim of this study was to analyze the epidemiological relationship among 22 clinical isolates of S. maltophilia as well as the molecular mechanisms responsible for the acquisition of quinolone-resistance in these strains. The results of the pulsed-field gel electrophoresis (PFGE) showed an heterogenicity of 82% among the strains used in the study. On the other hand, no amino acid changes were found in the quinolone resistance-determining region (QRDR) of either gyrA and parC genes among quinolone-susceptible and -resistant S. maltophilia strains. Besides, the amino acid of the GyrA found in the position equivalent to Ser-83 of E. coli was Gln instead of a Ser or Thr, the amino acids usually encountered in this position among Gram-negative bacteria. The results suggest that there is not a relationship between the presence of this Gln and the resistance to quinolones in S. maltophilia. We can conclude that, contrary to what has been described in other microorganisms, in these S. maltophilia isolates, the development of resistance to quinolones was not related to mutations in the QRDR of gyrA and parC genes. Thus, to our knowledge, this is the first report describing this phenomenon. | 2002 | 12523620 |
| 2057 | 5 | 0.9987 | Characteristics of quinolone resistance in Escherichia coli isolated from wildlife in Poland. The widespread use of quinolones (QNs) in human and veterinary medicine has resulted in the emergence of QN-resistant bacteria. The most common and widespread type of resistance to FQ is the presence of point mutations in the QRDR region and/or PMQR genes. The aim of the study was to analyze the mechanisms of quinolone resistance among E. coli strains isolated from wild animals in Poland. Out of 42 tested isolates, 39 strains had at least one point mutation in the gyrA gene; however, 76.2% of the isolates had at least three mutations in the GyrA and ParC domains, mainly S83L or D87L in the gyrA gene and S80I in the parC gene. Single isolates had also other mutations: D87Y in the GyrA domain and E84G, A108V, G78C, or S80R in the ParC domain. In 12 strains (28.5%), including three in which no QRDR mutations were confirmed, the presence of single PMQR genes: qnrB, qnrS, and aac(6')-Ib-cr was also demonstrated. Accumulation of point mutations was associated with high values of MIC of fluoroquinolones and single mutations or the presence of PMQR genes were associated with low-level resistance (MIC from 2 to 8 mg/L). The comparative method (MAS-PCR) confirmed the results of sequencing in most cases (90.5%). The E. coli strains isolated from the wildlife were characterized by the same mechanisms of QNs-resistance as those most often identified among isolates from anthropogenic environments. The obtained results indicate that the level of QNs-resistance is really high and monitoring should be obligatorily extended to the natural environment. | 2025 | 41023203 |
| 1576 | 6 | 0.9987 | Emergence of multidrug-resistant Gram-negative bacteria during selective decontamination of the digestive tract on an intensive care unit. OBJECTIVES: During treatment with selective decontamination of the digestive tract (SDD), four multidrug-resistant (MDR) strains, three different Escherichia coli and one Klebsiella pneumoniae, were isolated from four patients not known as carriers of such MDR strains before their admission to the intensive care unit (ICU) in the Academic Medical Center (AMC) in Amsterdam. These isolates were extended-spectrum beta-lactamase (ESBL)-positive. We investigated whether this was due to interspecies transfer of resistance genes. METHODS: The MDR strains were typed by amplified fragment length polymorphism (AFLP) analysis. The plasmids from these strains were characterized by restriction fragment length polymorphism and the resistance genes were characterized by PCR and sequence analysis. RESULTS: The strains were genetically unrelated and contained identical plasmids with ESBL genes. CONCLUSIONS: We identified an outbreak of plasmid-mediated ESBL genes during SDD treatment in the ICU. The use of third-generation cephalosporins in SDD is associated with the emergence of ESBLs. We conclude that identification of emerging MDR Gram-negative bacteria and recognition of resistance plasmid transfer during SDD treatment are crucial for optimal application of this regimen in ICUs. | 2006 | 16891326 |
| 2080 | 7 | 0.9987 | Distribution of the antiseptic-resistance genes qacE and qacE delta 1 in gram-negative bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1 was studied in a large number of Gram-negative bacteria by a method that included the polymerase chain reaction (PCR). A total of 117 strains of Gram-negative bacteria, isolated from clinical or environmental sources, was used in this analysis. We demonstrated the presence of these genes in 48 of 78 strains of Pseudomonas, in 20 of 26 strains of Vibrio, and in four of 13 strains of other species. These results indicate that the antiseptic-resistance genes are present in a broad range of species of Gram-negative bacteria. | 1998 | 9503610 |
| 1567 | 8 | 0.9987 | Chromosomal Amplification of the blaOXA-58 Carbapenemase Gene in a Proteus mirabilis Clinical Isolate. Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of bla(OXA-58) class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a bla(AmpC)-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology. | 2017 | 27855079 |
| 2063 | 9 | 0.9987 | Nalidixic acid-a good marker of fluoroquinolone resistance mechanisms in Escherichia coli. The purpose of this study was to evaluate how ciprofloxacin, pefloxacin, and nalidixic acid disks perform in screening fluoroquinolone resistance mechanisms in 278 Escherichia coli isolates collected from a prospective clinical material. Antimicrobial susceptibility testing of ciprofloxacin, pefloxacin, and nalidixic acid was performed with the disk diffusion method. PCR-based and sequencing methods were used to detect chromosomal mutations in the gyrA and parC genes and the presence of plasmid-mediated qnr and aac(6')-1b-cr genes. In addition, whole-genome sequencing was used to confirm these results. Our results show that fluoroquinolone resistance mechanisms were discovered, even in ciprofloxacin-susceptible isolates, and plasmid-mediated low-level fluoroquinolone resistance is easily missed if only ciprofloxacin disk is used. E. coli strains with chromosomal gyrA and/or parC mutations were well detected with pefloxacin disk. However, nalidixic acid was a superior tool to detect and differentiate between low- (plasmid-mediated) and high-level (chromosomal mutations) fluoroquinolone resistance in E. coli. Thus, more clinical studies are needed to evaluate the clinical relevance of fluoroquinolone resistance mechanisms in enteric bacteria and pathogens that show potential but are not yet phenotypically fluoroquinolone-resistant. IMPORTANCE: We show in our clinical setting that fluoroquinolone resistance mechanisms are discovered, even among phenotypically fluoroquinolone-susceptible Escherichia coli isolates. When plasmid-mediated quinolone-resistance determinants are present, they are a potential risk for treatment failures due to accumulation of resistance mechanisms during the antimicrobial treatment. Therefore, when it is clinically relevant, fluoroquinolone resistance mechanisms in E. coli should be monitored more closely, and we also recommend testing nalidixic acid susceptibility. | 2025 | 40401973 |
| 2082 | 10 | 0.9987 | Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. A screening technique for integrons in members of the family Enterobacteriaceae and nonfermenting gram-negative bacteria by real-time PCR is reported. A total of 226 isolates of gram-negative bacteria obtained from a variety of clinical specimens were screened for class 1 integrons by real-time PCR performed on a LightCycler instrument. This technique used a primer pair specific for a 300-bp conserved region at the 5' ends of class 1 integrons. The screening assay was evaluated by comparison with results obtained by the conventional, thermal-block PCR (long PCR) by using established conditions and primers for the detection of class 1 integrons, and the real-time PCR technique was thus shown to be both sensitive and specific. DNA from 50 of 226 (22%) isolates screened was identified as containing an integron by the screening PCR, and sequence data were obtained across the integron for 34 of 50 (68%) of these isolates. In an attempt to study the molecular epidemiology of antimicrobial resistance genes carried within integrons, a comparison of the types of gene cassettes carried by isolates from different patients was made. Adenyltransferase genes conferring resistance to streptomycin and spectinomycin were the predominant gene cassettes amplified in the study. Resistance to trimethoprim was also frequently found to be encoded within integrons. Furthermore, multiple bacterial isolates obtained from one patient over a 5-month period were all shown to carry an integron containing the same single adenyltransferase gene cassette, suggesting that these elements were relatively stable in this case. | 2001 | 11257011 |
| 5556 | 11 | 0.9987 | Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. Antibiotic resistance among Escherichia coli isolates from diarrhoeal disease in cattle was studied. Many of the isolates were multiply resistant to beta-lactams, including expanded-spectrum cephalosporins, aminoglycosides, sulphonamides, tetracycline and fluoroquinolones. In many of the isolates, IEF revealed a strong beta-lactamase band compatible with overexpression of the AmpC beta-lactamase, either alone or in addition to TEM-type enzymes. Several of the isolates also possessed genes encoding virulence factors associated with animal and human diarrhoeal diseases. These results suggest that the use of antibiotics in animals could lead to a reservoir of antibiotic-resistant bacteria that could potentially infect humans. | 1999 | 10552976 |
| 5854 | 12 | 0.9987 | Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria. | 2010 | 20368404 |
| 1710 | 13 | 0.9987 | Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. OBJECTIVES: Recent research has demonstrated that natural populations of bacteria carry large numbers of mobile genetic elements that may harbour antibiotic resistance determinants. This study aimed to investigate carbapenem resistance in Gram-negative bacteria isolated from natural environments in Béjaïa (Algeria) and to determine the horizontal gene transfer potential of a subset of these antibiotic resistance genes (ARGs). METHODS: Antibiotic-resistant bacteria were isolated and the host was identified using MALDI-TOF/MS and 16S rRNA sequencing. ARG carriage was investigated by the double-disk synergy test, metallo-β-lactamase (MBL) production test and PCR screening for carbapenemase genes. Conjugation experiments were performed to determine potential ARG mobility. To identify ARGs, genomic libraries were constructed and functionally screened and inserts were sequenced. RESULTS: A total of 62 antibiotic-resistant strains isolated from soil and water samples were classified as belonging to the Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae and Aeromonadaceae families. Four highly imipenem-resistant (MIC>64μg/mL) and cefotaxime-resistant (MIC>8μg/mL) clinically-relevant strains were selected for further characterisation. All four strains produced extended-spectrum β-lactamases, but MBL production was not confirmed. Imipenem and cefotaxime resistance was transferable to Escherichia coli but was not conferred by bla(AmpC), bla(IMP), bla(NDM), bla(KPC), bla(OXA-48) or bla(GES) genes. Novel putative resistance mechanisms were identified, including a novel DHA β-lactamase conferring clinical resistance to cefotaxime. CONCLUSIONS: The environment is a reservoir of carbapenem-resistant bacteria. Further investigation of the evolution and dissemination of antibiotic resistance in environmental bacteria is required in order to understand and prevent the emergence of resistance in the clinical environment. | 2018 | 30071355 |
| 1708 | 14 | 0.9987 | High-level of resistance to β-lactam and presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from soil. OBJECTIVES: Bacteria belonging to the genera Ochrobactrum and Achromobacter are bacteria considered opportunistic, causing infections mainly in immunocompromised patients. β-lactamases are the main cause of resistance to β-lactam antibiotics. This study aimed to investigate the antimicrobial resistance profile and the presence of β-lactamases encoding genes in Ochrobactrum sp. and Achromobacter sp. isolated from Brazilian soils. METHODS: Soil samples from the five regions of Brazil were collected for the isolation of bacteria, which were identified molecularly and then, the minimum inhibitory concentration and detection of β-lactamases encoding genes were performed. RESULTS: High-level of resistance to β-lactam antibiotics and different β-lactamases encoding genes were found (bla(CTX-M-Gp1), bla(SHV), bla(OXA-1-like) and bla(KPC)), including the first report of the presence of bla(KPC) in bacteria belonging to the genera Ochrobactrum and Achromobacter. CONCLUSION: The results showed that the bacteria from this study, belonging to genera Ochrobactrum and Achromobacter isolated from soil, harbor different β-lactamases encoding genes and can act as a reservoir of these genes. | 2017 | 29111479 |
| 2050 | 15 | 0.9987 | Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. AIMS: To investigate the occurrence of fosfomycin-resistant (fos(R) ) bacteria in aquatic environments. METHODS AND RESULTS: A fos(R) strain of Enterobacter cloacae was isolated from a water sample collected at a site (50°41'33·44″N, 119°19'49·50″W) near the mouth of the Salmon River at Salmon Arm, in south-central British Columbia, Canada. The strain was identified by PCR screening for plasmid-borne, fosA-family amplicons, followed by selective plating. Sequencing of the resistance gene cloned using PCR primers to conserved flanking DNA revealed a new allele (95% amino acid identity to fosA), and I-Ceu I PFGE showed that it was chromosomally located. In Escherichia coli, the cloned DNA conferred a greater resistance to fosfomycin than its fosA counterpart. CONCLUSIONS: Gene fosA2 conferred fosfomycin resistance in an environmental isolate of Ent. cloacae. SIGNIFICANCE AND IMPACT OF THE STUDY: The repurposing of older antibiotics should be considered in the light of existing reservoirs of resistance genes in the environment. | 2011 | 21392044 |
| 1716 | 16 | 0.9987 | Detection of clinically important β-lactamases by using PCR. Increasing antimicrobial resistance of nosocomial pathogens is becoming a serious threat to public health. To control the spread of this resistance, it is necessary to detect β-lactamase-producing organisms in the clinical setting. The aims of the study were to design a PCR assay for rapid detection of clinically encountered β-lactamase genes described in Enterobacteriaceae and Gram-negative non-fermenting bacteria. The functionality of proposed primers was verified using eight reference strains and 17 strains from our collection, which contained 29 different β-lactamase genes. PCR products of the test strains were confirmed by Sanger sequencing. Sequence analysis was performed using bioinformatics software Geneious. Overall, 67 pairs of primers for detecting 12 members of the class C β-lactamase family, 15 members of class A β-lactamases, six gene families of subclass B1, one member each of subclasses B2, B3 and class D β-lactamases were designed, of which 43 pairs were experimentally tested in vitro. All 29 β-lactamase genes, including 10 oxacillinase subgroups, were correctly identified by PCR. The proposed set of primers should be able to specifically detect 99.7% of analyzed β-lactamase subtypes and more than 79.8% of all described β-lactamase genes. | 2021 | 34100944 |
| 5855 | 17 | 0.9986 | Plasmid-encoded resistance to arsenic compounds in Gram-negative bacteria isolated from a hospital environment in Venezuela. Resistance to arsenic compounds was examined among amikacin resistant Gram-negative bacteria isolate from a hospital environment. Arsenite resistance (Ars(r)) was found in a high proportion of isolates ( >60%) being frequently associated with resistance to tellurite (40%), and to other antimicrobial agents. Ars determinants (27%) were found to be transferable to E. coli K12 strains from which large plasmid DNA molecules were isolated and characterized by agarose gel electrophoresis. Plasmids were identified by both classical incompatibility tests, and by replicon typing using DNA specific probes. Most of the amikacin-arsenite (Ak-Ars) conjugative plasmids belong to the H incompatibility group. These results suggest that Ak-Ars resistance linked to IncH plasmids is wide spread in Gram-negative bacteria. | 1997 | 18611788 |
| 5980 | 18 | 0.9986 | Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. The gyrA gene mutations associated with quinolone resistance were determined in 21 epidemiologically unrelated clinical isolates of Acinetobacter baumannii. Our studies highlight the conserved sequences in the quinolone resistance-determining region of the gyrA gene from A. baumannii and other bacteria. All 15 isolates for which the MIC of ciprofloxacin is > or = 4 micrograms/ml showed a change at Ser-83 to Leu. Six strains for which the MIC of ciprofloxacin is 1 microgram/ml did not show any change at Ser-83, although a strain for which the MIC of ciprofloxacin is 1 microgram/ml exhibited a change at Gly-81 to Val. Although it is possible that mutations in other locations of the gyrA gene, the gyrB gene, or in other genes may also contribute to the modulation of the MIC level, our results suggest that a gyrA mutation at Ser-83 is associated with quinolone resistance in A. baumannii. | 1995 | 7625818 |
| 1761 | 19 | 0.9986 | Whole Genome Sequence Analysis of Burkholderia contaminans FFH2055 Strain Reveals the Presence of Putative β-Lactamases. Burkholderia contaminans is a member of the Burkholderia cepacia complex (Bcc), a pathogen with increasing prevalence among cystic fibrosis (CF) patients and the cause of numerous outbreaks due to the use of contaminated commercial products. The antibiotic resistance determinants, particularly β-lactamases, have been poorly studied in this species. In this work, we explored the whole genome sequence (WGS) of a B. contaminans isolate (FFH 2055) and detected four putative β-lactamase-encoding genes. In general, these genes have more than 93% identity with β-lactamase genes found in other Bcc species. Two β-lactamases, a class A (Pen-like, suggested name PenO) and a class D (OXA-like), were further analyzed and characterized. Amino acid sequence comparison showed that Pen-like has 82% and 67% identity with B. multivorans PenA and B. pseudomallei PenI, respectively, while OXA-like displayed strong homology with class D enzymes within the Bcc, but only 22-44% identity with available structures from the OXA family. PCR reactions designed to study the presence of these two genes revealed a heterogeneous distribution among clinical and industrial B. contaminans isolates. Lastly, bla(PenO) gene was cloned and expressed into E. coli to investigate the antibiotic resistance profile and confers an extended-spectrum β-lactamase (ESBL) phenotype. These results provide insight into the presence of β-lactamases in B. contaminans, suggesting they play a role in antibiotic resistance of these bacteria. | 2019 | 30783798 |