Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
244201.0000Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin. Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections.201424735183
244110.9999Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Bacteria of the genus Staphylococcus were isolated from air sampled from living spaces in Kraków (Poland). In total, 55 strains belonging to the genus Staphylococcus were isolated from 45 sites, and 13 species of coagulase-negative staphylococci were identified. The species composition of studied airborne microbiota contains Staphylococcus species that are rarely infectious to humans. Most commonly isolated species comprised S. hominis and S. warneri. The disk-diffusion tests showed that the collected isolates were most frequently resistant to erythromycin. The PCR technique was employed to search for genes conferring the resistance in staphylococci to antibiotics from the group of macrolides, lincosamides and streptogramins. The analyzed Staphylococcus isolates possessed simultaneously 4 different resistance genes. The molecular analysis with the use of specific primers allowed to determine the most prevalent gene which is mphC, responsible for the resistance to macrolides and for the enzymatic inactivation of the drug by phosphotransferase. The second most often detected gene was msrA1, which confers the resistance of staphylococci to macrolides and is responsible for active pumping of antimicrobial particles out of bacterial cells.201728955110
243920.9998Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BACKGROUND: Macrolides and lincosamides are two leading types of antibiotics commonly used in therapies. The study examines the differences in resistance to these antibiotics and their molecular bases in S. epidermidis as well as in rarely isolated species of coagulase-negative staphylococci such as S. hominis, S. haemolyticus, S. warneri and S. simulans. The isolates were tested for the presence of the erm(A), erm(B), erm(C), lnu(A), msr(A), msr(B), mph(C), ere(A) and ere(B) genes. Phenotypic resistance to methicillin and mecA presence were also determined. RESULTS: The MLS(B) resistance mechanism was phenotypically found in isolates of species included in the study. The most prevalent MLS(B) resistance mechanism was observed in S. hominis, S. haemolyticus and S. epidermidis isolates mainly of the MLS(B) resistance constitutive type. Macrolide, lincosamide and streptogramin B resistance genes were rarely detected in isolates individually. The erm(B), ere(A) and ere(B) genes were not found in any of the strains. The erm(A) gene was determined only in four strains of S. epidermidis and S. hominis while lnu(A) was seen in eight strains (mainly in S. hominis). The erm(C) gene was present in most of S. epidermidis strains and predominant in S. hominis and S. simulans isolates. The examined species clearly differed between one another in the repertoire of accumulated genes. CONCLUSIONS: The presence of genes encoding the MLS(B) resistance among CoNS strains demonstrates these genes' widespread prevalence and accumulation in opportunistic pathogens that might become gene reservoir for bacteria with superior pathogenic potential.201931182020
549830.9998The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria.202539747570
549940.9998Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined.202337511416
593050.9998Clinical Resistant Strains of Enterococci and Their Correlation to Reduced Susceptibility to Biocides: Phenotypic and Genotypic Analysis of Macrolides, Lincosamides, and Streptogramins. Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.202336978327
550060.9998Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.202235150575
559770.9998Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLS(b), L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance.202336712199
590980.9998Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. Lactobacillus reuteri and Lactobacillus fermentum, which are commonly used as food processing aids and probiotics, can potentially act as reservoirs of antibiotic resistance genes. Acquired resistance genes may be transferred via the food chain or in the gastrointestinal tract to pathogenic bacteria. Knowledge of the distributions of antibiotic MICs for a species is needed when using a phenotypic method to assess the presence of acquired resistance genes. In the present study, 56 L. reuteri and 56 L. fermentum strains that differed by source and spatial and temporal origin were assessed for antibiotic susceptibility using an Etest kit and a broth microdilution protocol. L. fermentum strains displayed a uniform distribution of MICs for all six antibiotics tested. L. reuteri strains had a bimodal distribution of MICs or a distribution with MICs above the test range for 7 of the 14 antibiotics tested. Genetic relatedness was observed among L. reuteri strains with high MICs for both ampicillin and tetracycline and among strains with high MICs for both erythromycin and clindamycin. Results obtained with the Etest and the broth microdilution method corresponded well with each other. Thus, further research may make it possible to define microbiological breakpoints for distinguishing between strains with and without acquired resistance genes.200717340877
550490.9998Whole Genome Sequencing of Staphylococci Isolated From Bovine Milk Samples. Staphylococci are among the commonly isolated bacteria from intramammary infections in bovines, where Staphylococcus aureus is the most studied species. This species carries a variety of virulence genes, contributing to bacterial survival and spread. Less is known about non-aureus staphylococci (NAS) and their range of virulence genes and mechanisms, but they are the most frequently isolated bacteria from bovine milk. Staphylococci can also carry a range of antimicrobial resistance genes, complicating treatment of the infections they cause. We used Illumina sequencing to whole genome sequence 93 staphylococcal isolates selected from a collection of staphylococcal isolates; 45 S. aureus isolates and 48 NAS isolates from 16 different species, determining their content of antimicrobial resistance genes and virulence genes. Antimicrobial resistance genes were frequently observed in the NAS species as a group compared to S. aureus. However, the lincosamide resistance gene lnuA and penicillin resistance gene blaZ were frequently identified in NAS, as well as a small number of S. aureus. The erm genes conferring macrolide resistance were also identified in several NAS isolates and in a small number of S. aureus isolates. In most S. aureus isolates, no antimicrobial resistance genes were detected, but in five S. aureus isolates three to six resistance genes were identified and all five of these carried the mecA gene. Virulence genes were more frequently identified in S. aureus, which contained on average five times more virulence genes compared to NAS. Among the NAS species there were also differences in content of virulence genes, such as S. chromogenes with a higher average number of virulence genes. By determining the content of a large selection of virulence genes and antimicrobial resistance genes in S. aureus and 16 different NAS species our results contribute with knowledge regarding the genetic basis for virulence and antimicrobial resistance in bovine staphylococci, especially the less studied NAS. The results can create a broader basis for further research into the virulence mechanisms of this important group of bacteria in bovine intramammary infections.202134987483
5502100.9997Short communication: Diversity of species and transmission of antimicrobial resistance among Staphylococcus spp. isolated from goat milk. The increasing production of goat milk and its derivatives is affected by the occurrence of intramammary infections, which are highly associated with the presence of Staphylococcus species, including some with zoonotic potential. Staphylococci in general can exchange mobile genetic elements, a process that may be facilitated by the isolate's capacity of forming biofilms. In this study we identified, to the species level, Staphylococcus isolated from goat milk samples by MALDI-TOF and confirmed the identification by sequencing housekeeping genes (rrs and tuf). Eight species were identified, more than half being either Staphylococcus epidermidis or Staphylococcus lugdunensis. The isolates were shown by pulsed-field gel electrophoresis to be genetically diverse between the studied herds. Resistance to ampicillin and penicillin was widespread, and 2 Staph. epidermidis isolates contained the methicillin-resistance gene mecA. Most of the isolates that were resistant to at least 1 of the 13 antimicrobials tested harbored plasmids, one of which was demonstrated to be conjugative, being transferred from a Staph. epidermidis to a Staphylococcus aureus strain. Biofilm formation was observed in almost every isolate, which may contribute to their capacity of exchanging antimicrobial resistance genes in addition to acting as a physical barrier to the access of drugs. Our results showed that antimicrobial resistance among goat staphylococci may be emerging in a process facilitated by the exchange of mobile genetic elements between the bacteria and the establishment of biofilms, which calls for careful monitoring and more effective control therapies.201930928272
5646110.9997Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.202336515883
5972120.9997Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.201729063318
5538130.9997Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed.201728601447
5996140.9997Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.200817957105
5642150.9997Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment.201526385434
5997160.9997Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe.200818063151
2440170.9997Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).201626253583
5644180.9997Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.202337317216
5921190.9997Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515