Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
243301.0000Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. She-camel milk is an alternative solution for people allergic to milk; unfortunately, potential harmful bacteria have not been tested in she-camel milk. Listeria monocytogenes is one harmful bacterium that causes adverse health effects if chronically or acutely ingested by humans. The purpose of this study was to estimate the prevalence, characterize the phenotypic, genetic characterization, virulence factors, and antibiopotential harmful bacteria resistance profile of Listeria isolated from the milk of she-camel. Udder milk samples were collected from 100 she-camels and screened for mastitis using the California mastitis test (46 healthy female camels, 24 subclinical mastitic animals and 30 clinical mastitic animals). Samples were then examined for the presence of pathogenic Listeria spp; if located, the isolation of Listeria was completed using the International Organization for Standards technique to test for pathogenicity. The isolates were subjected to PCR assay for virulence-associated genes. Listeria spp. were isolated from 4% of samples and only 1.0% was confirmed as L. monocytogenes. The results of this study provide evidence for the low prevalence of intramammary Listeria infection; additionally, this study concludes she-camel milk in healthy camels milked and harvested in proper hygienic conditions may be used as alternative milk for human consumption.201424161878
243210.9996Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Spore-forming probiotic Bacillus spp. have received extensively increasing scientific and commercial interest, but raised the concerns in the potential risks and pathogenesis. In this study, 50 commercial probiotic products were collected from all over the country and Bacillus spp. isolated from products were evaluated for the safety on the aspects of hemolytic activity, contamination profiles, toxin genes, cytotoxicity, antimicrobial resistance, and genotyping. 34 probiotic products (68%) exhibited hemolysis, including 19 human probiotics, 9 animal probiotics, and 6 plant probiotics. 28 products (56%) contained other bacteria not labeled in the ingredients. 48 strains in Bacillus spp. including 17 B. subtilis group isolates, 28 B. cereus, and 3 other Bacillus spp. were isolated from human, food animal, and plant probiotic products. Detection rates of enterotoxin genes, nheABC and hblCDA, and cytotoxin cytK2 in 48 Bacillus spp. isolates were 58%, 31%, and 46%, respectively. Also, one isolate B. cereus 34b from an animal probiotic product was positive for ces, encoding cereulide. 28 of 48 Bacillus spp. isolates were cytotoxic. 19 of 28 B. cereus isolates maintained to exhibit hemolysis after heat treatment. All 48 Bacillus spp. isolates exhibited resistance to lincomycin, and 5 were resistant to tetracycline. The genotyping of commercial probiotic Bacillus spp. reported in this study showed that ces existed in B. cereus 34b with the specific sequence type (ST1066). These findings support the hypothesis that probiotic products were frequently contaminated and that some commercial probiotics consisted of Bacillus spp. may possess toxicity and antimicrobial resistance genes. Thus, the further efforts are needed in regarding the surveillance of virulence factors, toxins, and antibiotic resistance determinants in probiotic Bacillus spp.202133509502
590020.9996Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. This study aimed to assess the safety aspects of 15 lactic acid bacteria (LAB) strains previously isolated from a dairy environment with relation to their beneficial features. LAB strains were assessed using phenotypic methods according to their production of virulence factors at 25 °C and 37 °C, as well as by examining their potential resistance to 15 antibiotics. Polymerase chain reaction (PCR) was also used to identify the presence of 50 genes associated with virulence factors and antibiotic resistance in the strains. None of the strains presented hemolytic activity or the production of gelatinase, lipase, deoxyribonuclease, or the tested biogenic amines. Based on the disk diffusion assay, all strains were resistant to oxacillin and sulfa/trimethoprim. Further, some were resistant to gentamicin (14), clindamycin (11), vancomycin (9), rifampicin (8), erythromycin (5), tetracycline (4), ampicillin (2), and chloramphenicol (1); no strain was resistant to imipenem. Regarding virulence- and antibiotic-resistance-related genes, 19 out of 50 tested genes were present in some strains; there was a variable association of expression. Based on the obtained data, the isolates presented relatively safe characteristics and behavior, findings that should lead to further studies to assess their potential usage as beneficial cultures in the food industry.202031970700
605730.9996Incidence of virulence determinants and antibiotic resistance in lactic acid bacteria isolated from food products. Background: Lactic acid bacteria (LAB) confer beneficial health effects in humans. However, the safety of these bacteria and their potential to spread resistance in the environment must be evaluated. Materials & methods: Fifty-three LAB were isolated from different food samples and assessed for the prevalence of virulence determinants and antibiotic resistance profile. Results: Multiple resistance was reported for Lactobacillus brevis MIM04, having revealed phenotypic resistance to vancomycin (MIC >128 μg/ml), ampicillin, cefotaxime, oxacillin and gentamicin. Virulence traits (cylA, gelE, esp and agg) were detected using specific primers. Enterococcus faecium CHE32, Lactobacillus plantarum CHE37 and E. faecium MLK68 lack virulence genes, possess antimicrobial activity and survive in low pH and bile salt conditions. Conclusion: Isolated LAB revealed probiotic properties.202235172602
590140.9995Identification and characterization of vancomycin-resistant Enterococcus species frequently isolated from laboratory mice. To determine the prevalence of drug resistant bacteria colonizing laboratory mice, we isolated and characterized vancomycin-resistant Enterococcus species (VRE) from commercially available mice. A total of 24 VRE isolates were obtained from 19 of 21 mouse strains supplied by 4 commercial breeding companies. Of these, 19 isolates of E. gallinarum and 5 isolates of E. casseliflavus possessing the vanC1 and vanC2/3 genes intrinsically, exhibited intermediate resistance to vancomycin respectively. In addition, these isolates also exhibited diverse resistant patterns to erythromycin, tetracycline, and ciprofloxacin, whereas the use of antibiotics had not been undertaken in mouse strains tested in this study. Although 6 virulence-associated genes (ace, asa, cylA, efaA, esp, and gelE) and secretion of gelatinase and hemolysin were not detected in all isolates, 23 of 24 isolates including the isolates of E. casselifalvus secreted ATP into culture supernatants. Since secretion of ATP by bacteria resident in the intestinal tract modulates the local immune responses, the prevalence of ATP-secreting VRE in mice therefore needs to be considered in animal experiments that alter the gut microflora by use of antibiotics.201425077759
559950.9995Antimicrobial susceptibility profiles of Staphylococcus spp. contaminating raw goat milk. BACKGROUND AND AIM: Antimicrobial resistance poses a major threat to global public health. Foodstuff of animal origin can serve as potential vehicles for the dissemination of antimicrobial-resistant bacteria and resistance genes to consumers. In view of the lack of knowledge about antimicrobial resistance in bacteria associated with goat milk, the aim of this study was to report species-level identification and antimicrobial susceptibility profiles of a large collection of Staphylococcus spp. isolates recovered from raw goat milk in Brazil. MATERIALS AND METHODS: A total of 434 Staphylococcus spp. isolates originated from 510 goat milk samples in Northeast Brazil were investigated. The isolates were obtained by conventional microbiological methods. Species identification and antimicrobial susceptibility testing were performed by means of a semi-automated system using a panel for biochemical tests and broth microdilution method for 19 antimicrobial drugs. RESULTS: Although Staphylococcus aureus (22.6%) accounted for the majority of the isolates, a total of 13 different non-aureus staphylococci spp. were identified. High resistance rates against erythromycin (40.8%), and the beta-lactams ampicillin (45.9%) and penicillin (42.9%) were observed among S. aureus isolates. The most significant findings were related to the resistance against quinupristin-dalfopristin, a drug of last resort used in human medicine to treat infections caused by vancomycin-resistant S. aureus and enterococci. CONCLUSION: The high diversity of Staphylococcus spp. showing phenotypic resistance against different antimicrobial drugs encourages further investigations on the real impact of these bacteria as reservoirs of antimicrobial resistance genes to consumers. Furthermore, the potential impact of technological processes, such as pasteurization, fermentation, and maturation, on the maintenance and dissemination of antimicrobial resistance among the microbial populations in milk and dairy products must also be investigated.202134220106
578260.9995The Efficacy of Bacteriocins Against Biofilm-Producing Bacteria Causing Bovine Clinical Mastitis in Dairy Farms: A New Strategy. Using an alternative bio-product is one of the most promising ways to control bovine mastitis and avoid new intra-mammary infections. The aims of this study were to ascertain the prevalence of biofilm-forming bacteria responsible for causing clinical mastitis in dairy herds and to assess the effectiveness of bacteriocins, produced by Bacillus subtilis, in controlling the growth of these bacteria in the milk of animals. A total of 150 milk samples were collected from cows and buffalos suffering from mastitis and the etiological agents were isolated and identified by the VITEK-2-COMPACT-SYSTEM®. Additionally, the capability of the bacterial isolates to produce biofilms was determined. RT-PCR was used to detect enterotoxin-producing genes (sed and seb), resistance genes (mecA and blaZ), and biofilm-associated genes (icaA and fnbA) in the isolated bacteria. The susceptibility patterns of the bacterial isolates to bacteriocins were assessed using an agar well-diffusion assay. S. aureus was significantly more capable of producing biofilms than coagulase-negative Staphylococcus isolates. S. ubris was the strongest biofilm producer among the Streptococcus species. The sensitivity profiles of the Staphylococcus spp. (S. aureus and coagulase-negative Staphylococcus) and their biofilm producers to bacteriocins were significantly higher (100% and 90%, respectively) at the same concentration. Bacteriocins had a lethal effect on Staphylococci, Streptococci, and biofilm development at a dose of 250 µg/mL. In dairy farms, bacteriocins are a viable alternative treatment for the prevention and control of bovine clinical mastitis.202337256384
240370.9995Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. Cheese, especially ripened varieties, harbor a very complex and heterogeneous microbiota. In addition to the desired microorganisms (starter cultures) added during cheese production, potentially harmful bacteria may also enter the production chain. Regarding the latter, the focus of this study was on coagulase-negative staphylococci (CNS) and Macrococcuscaseolyticus. Both are known to harbor a variety of genes coding for antibiotic resistance, including mecA, mecB, mecC, and mecD. Coagulase-negative staphylococci or macrococci carrying such genes or other virulence factors should not be present in cheese. Cheese samples (101 in total) were collected from retail sources. Coagulase-negative staphylococci and M. caseolyticus were isolated utilizing selective agars, and species were identified by phenotypical tests and partial sequencing of the sodA gene. The results allowed identification of 53 CNS strains and 19 M. caseolyticus strains. Among the CNS, 11 isolates of Staphylococcus saprophyticus and one Staphylococcus epidermidis isolate were obtained. Both species are potential human pathogens and may thus adversely affect the safety of these food products. Screening for antimicrobial resistance was performed by application of disc diffusion tests, a gradient strip-test, and 14 different PCR tests. Evidence for methicillin resistance (by either positive disc diffusion assay for cefoxitin or by mec PCR) was found in CNS isolates and M. caseolyticus (9 isolates each). Regarding other virulence factors, no genetic determinants for coagulase or the most common staphylococcal enterotoxins sea, seb, sec, sed, and see were detected in any of the CNS or M. caseolyticus isolates by PCR testing. In conclusion, the presence of facultatively pathogenic CNS and carriers of genes for antibiotic resistance in both groups of microorganisms, especially mec genes, and the respective food safety issues need further evaluation and surveillance.202235965117
265680.9995Occurrence and Antimicrobial Resistance of Enterococci Isolated from Goat's Milk. INTRODUCTION: Enterococci are widespread, being part of the bacterial flora of humans and animals. The food chain can be therefore considered as the main route of transmission of antibiotic resistant bacteria between the animal and human populations. Milk in particular represents a source from which resistant bacteria can enter the human food chain. The aim of the study was to determine the occurrence and resistance to antimicrobial agents of Enterococcus spp. strains isolated from raw goat's milk samples. MATERIAL AND METHODS: A total of 207 goat's milk samples were collected. Samples were cultivated on selective media and confirmed as E. faecium or E. faecalis and screened for selected resistance genes by PCR. Drug susceptibility determination was performed by microdilution on Sensititre EU Surveillance Enterococcus EUVENC Antimicrobial Susceptibility Testing (AST) Plates and Sensititre US National Antimicrobial Resistance Monitoring System Gram Positive CMV3AGPF AST Plates. RESULTS: Enterococcal strains totalling 196 were isolated, of which 40.8% were E. faecalis and 15.3% were E. faecium. All tested isolates were susceptible to linezolid, penicillin and tigecycline. For most other antimicrobials the prevalence of resistance was 0.5-6.6% while high prevalence of quinupristin/dalfopristin (51.5%), tetracycline (30%) and lincomycin (52%) resistance was observed. CONCLUSION: This study affords better knowledge concerning the safety of raw goat's milk in terms of the enterococci possible to isolate from this foodstuff. It seems that enterococci in milk are still mostly susceptible to antimicrobials of major concern as multiply resisted drugs, such as gentamycin and vancomycin. However, the presence of multi-resistant strains in goat milk is cause for apprehension.202135111998
560090.9995The Characterization and Beta-Lactam Resistance of Staphylococcal Community Recovered from Raw Bovine Milk. Staphylococci is an opportunistic bacterial population that is permanent in the normal flora of milk and poses a serious threat to animal and human health with some virulence factors and antibiotic-resistance genes. This study was aimed at identifying staphylococcal species isolated from raw milk and to determine hemolysis, biofilm, coagulase activities, and beta-lactam resistance. The raw milk samples were collected from the Düzce (Türkiye) region, and the study data represent a first for this region. The characterization of the bacteria was performed with MALDI-TOF MS and 16S rRNA sequence analysis. The presence of coa, icaB, blaZ, and mecA was investigated with PCR. A nitrocefin chromogenic assay was used for beta-lactamase screening. In this context, 84 staphylococci were isolated from 10 different species, and the dominant species was determined as S. aureus (32.14%). Although 32.14% of all staphylococci were positive for beta hemolysis, the icaB gene was found in 57.14%, coa in 46.42%, mecA in 15.47%, and blaZ in 8.33%. As a result, Staphylococcus spp. strains that were isolated from raw milk in this study contained some virulence factors at a high level, but also contained a relatively low level of beta-lactam resistance genes. However, considering the animal-environment-human interaction, it is considered that the current situation must be monitored constantly in terms of resistance concerns. It must not be forgotten that the development of resistance is in constant change among bacteria.202336978423
5601100.9995Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.202336634542
5596110.9995Enterotoxigenicity and Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Raw Buffalo and Cow Milk. Staphylococcal food poisoning is considered to be one of the most common foodborne illnesses worldwide. Because milk is rich in nutrients and its neutral pH, it leads to the growth of various bacteria. To date, the correlation between enterotoxigenic potential in Staphylococcus species and antimicrobial resistance (AMR), using bioinformatics analysis in buffalo and cow raw milk and the possible health risks from these bacteria, has not been examined in Egypt. A total of 42 Staphylococcus isolates representing 12 coagulase-positive staphylococci (Staphylococcus aureus and Staphylococcus intermedius) and 30 coagulase-negative staphylococci (Staphylococcus capitis, Staphylococcus xylosus, Staphylococcus carnosus, Staphylococcus saccharolyticus, and Staphylococcus auricularis) were isolated. An assay of the antimicrobial resistance phenotypes indicated low resistance against vancomycin (9.5%). The blaZ gene was associated with penicillin G and methicillin resistance and not with sulbactam + ampicillin. The presence of the gene ermB presented the correlation with erythromycin resistance and tetK with tetracycline resistance (correlation index: 0.57 and 0.49, respectively), despite the absence of the same behavior for ermC and tetM, respectively. Interestingly, the gene mecA was not correlated with resistance to methicillin or any other β-lactam. Correlation showed that slime-producing isolates had more resistance to antibiotics than those of nonslime producers. The multiple correlations between antibiotic resistance phenotypes and resistance genes indicate a complex nature of resistance in Staphylococcus species. The antimicrobial resistance could potentially spread to the community and thus, the resistance of Staphylococcus species to various antibiotics does not depend only on the use of a single antimicrobial, but also extends to other unrelated classes of antimicrobials.202031750778
5906120.9995Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. OBJECTIVE: To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probiotics. METHODS: Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. RESULTS: Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. CONCLUSION: Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.200920163065
2658130.9995Rapid detection of major enterotoxin genes and antibiotic resistance of Staphylococcus aureus isolated from raw milk in the Yazd province, Iran. INTRODUCTION: Raw milk is a nutrient-rich food, but it may harbour harmful bacteria, such as enterotoxigenic Staphylococcus aureus (S. aureus), which can cause staphylococcal food poisoning. Antibiotic resistance of S. aureus in raw milk can increase the risk of such infections, particularly among susceptible individuals. OBJECTIVE: This study aimed to investigate the prevalence of enterotoxin genes a, d, g, i and j and the antibiotic resistance of S. aureus isolated from raw milk samples. METHODS: During a 6-month sampling period, 60 raw milk specimens were obtained from diverse locations in Yazd province, Iran. Antibiogram profiling was conducted via the disc diffusion method. In addition, staphylococcal enterotoxin (SE) genes a, d, g, i, and j were detected through real-time PCR analysis. RESULTS: Bacteriological assays confirmed the presence of S. aureus in 11 samples (18.3%). All isolates demonstrated 100% resistance to penicillin G but exhibited sensitivity to vancomycin, while resistance to other antibiotics ranged from 36.4% to 45.5%. The prevalence of enterotoxin genes in these strains showed variable distribution, with sea being the predominant SE (45.5%), followed by sed (36.4%), seg (18.2), sej and sei (9.1% each). CONCLUSIONS: This study discovered the presence of multiple enterotoxins in S. aureus strains obtained from raw milk samples. These strains also demonstrated resistance to a variety of antibiotics. Since enterotoxigenic S. aureus is known to cause human food poisoning, monitoring food hygiene practices, especially during raw milk production, is critical.202438519836
5538140.9995Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed.201728601447
5565150.9995Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. Enterococci are considered valuable sentinel Gram-positive bacteria for monitoring vancomycin antibiotic resistance due to their widespread presence and characteristics. The use of antimicrobials in farming animals has a role in the increasing of Antimicrobial Resistance (AMR) and the anthropogenic transformation of the landscape has forced wildlife into greater contact with humans and their livestock. The transmission of resistant bacteria by their meat products is a significant contributor to AMR development. The present study aimed to assess the prevalence of vancomycin resistant Enterococci spp. In antimicrobial-treated farmed pigs meat and in antimicrobial-free wild boars meat. A total of 341 Enterococci were isolated from 598 pork meat samples (57 %) and 173 Enterococci were isolated from 404 wild boar meat samples (42.8 %). Data found showed that low-resistance was detected more in wild boars meat Enterococci (52.6 %) than in pork meat once (48.4 %). However, the prevalence of resistance genes was at low level (33.9 % in pork meat Enterococci and 4.4 % in wild boar meat ones) and the only gene found was vanC1/C2, related to intrinsic AMR. Normally, Enterococci persist in the normal intestinal flora of animals including humans. However, the presence of resistance genes was frequently linked to the detection of pathogenic genes, mostly gelE in pork meat isolates and asa1 in wild boars meat isolates. Pathogenic bacteria can cause severe infections in human that can become more risky if associated to the presence of AMR. Pathogenic bacteria were characterized and a high presence of E. gallinarum and E. casseliflavus was found. Given the growing interest in wild game meat consumption the monitoring of AMR in these matrices is essential. Further surveillance studies are needed to fully evaluate the emergence and spread of vancomycin-resistant Enterococci (VRE) and pathogenic Enterococci from animal-derived food to humans, including the role of wildlife in this phenomenon. Giving the higher interest in wild animals meat consumption, it is important to better evaluate the spread of AMR phenomenon in the future and intensify hygienic control of wild animals derived food.202439104496
5598160.9995Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519
2386170.9995Molecular typing and prevalence of antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from Chinese dairy cows with clinical mastitis. Bovine mastitis is a common disease occurring in dairy farms and can be caused by more than 150 species of pathogenic bacteria. One of the most common causative organisms is Streptococcus agalactiae, which is also potentially harmful to humans and aquatic animals. At present, research on S. agalactiae in China is mostly concentrated in the northern region, with limited research in the southeastern and southwestern regions. In this study, a total of 313 clinical mastitis samples from large-scale dairy farms in five regions of Sichuan were collected for isolation of S. agalactiae. The epidemiological distribution of S. agalactiae was inferred by serotyping isolates with multiplex polymerase chain reaction. Susceptibility testing and drug resistance genes were detected to guide the clinical use of antibiotics. Virulence genes were also detected to deduce the pathogenicity of S. agalactiae in Sichuan Province. One hundred and five strains of S. agalactiae (33.6%) were isolated according to phenotypic features, biochemical characteristics, and 16S rRNA sequencing. Serotype multiplex polymerase chain reaction analysis showed that all isolates were of type Ia. The isolates were up to 100% sensitive to aminoglycosides (kanamycin, gentamicin, neomycin, and tobramycin), and the resistance rate to β-lactams (penicillin, amoxicillin, ceftazidime, and piperacillin) was up to 98.1%. The TEM gene (β-lactam-resistant) was detected in all isolates, which was in accordance with a drug-resistant phenotype. Analysis of virulence genes showed that all isolates harbored the cfb, cylE, fbsA, fbsB, hylB, and α-enolase genes and none harbored bac or lmb. These data could aid in the prevention and control of mastitis and improve our understanding of epidemiological trends in dairy cows infected with S. agalactiae in Sichuan Province.202235522690
5903180.9995Screening of virulence determinants in Enterococcus faecium strains isolated from breast milk. In a previous study, the authors isolated lactic acid bacteria from breast milk of healthy mothers. Since some of the identified isolates belonged to the species Enterococcus faecium, the objective of this work was to evaluate their safety. The enterococcal strains were screened by polymerase chain reaction (PCR) and Southern hybridization for the presence of virulence determinants. The potential of the strains to acquire plasmids by conjugation was investigated by screening for genes involved in conjugation processes. Parallel, phenotypic assays were performed. Presence of genes conferring resistance to vancomycin was assessed by PCR. PCR amplifications and Southern hybridizations revealed that all the strains were clear of the majority of potential virulence determinants. None of the strains showed gelatinase activity, hemolysin production, or aggregation phenotype, and none carried the vanA or vanB genes. These findings suggest that milk of healthy mothers may be a source of avirulent E faecium isolates to the newborns.200515886339
2394190.9995Occurrence of antimicrobial resistance and virulence genes, and distribution of enterococcal clonal complex 17 from animals and human beings in Korea. Enterococci are major zoonotic bacteria that cause opportunistic infections in human beings and animals. Moreover, pathogenic strains can be disseminated between human beings and animals, particularly companion animals that come into frequent contact with people. Recently, Enterococcus faecium clonal complex 17 (CC17) has emerged as a pandemic clone. Most CC17 strains are ampicillin resistant and possess virulence genes such as esp and hyl. Despite the possible dissemination of CC17 between human beings and animals, prevalence data about CC17 in animals is limited. In the present study, the phenotypes and genotypes of antimicrobial resistance were compared, as well as virulence gene profiles from 184 enterococci strains isolated from chickens, pigs, companion animals, and human patients in Korea. Ampicillin-resistant E. faecium (AREF) strains were selected, and multilocus sequence typing was performed to investigate the dispersion of CC17 among animals and human beings. The companion animal and human isolates showed high resistance rates to ampicillin and ciprofloxacin, whereas food animal isolates showed high tetracycline and erythromycin resistance rates. Ampicillin-resistant E. faecium was only detected in human (21/21 E. faecium, 100%) and companion animal (3/5 E. faecium, 60%) isolates, and all human AREF strains and 1 canine AREF strain were confirmed as CC17. In conclusion, the occurrence of antimicrobial resistance and virulence genes, and the distribution of enterococcal CC17 in companion animal enterococcal strains were similar to those of human strains rather than to those of food animal strains.201222855376