Antibiotic resistance in primary and persistent endodontic infections. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
241701.0000Antibiotic resistance in primary and persistent endodontic infections. INTRODUCTION: The presence of antibiotic resistance genes in endodontic microorganisms might render the infection resistant to common antibiotics. The aims of this project were to identify selected antibiotic resistance genes in primary and persistent endodontic infections and to determine the effectiveness of contemporary endodontic procedures in eliminating bacteria with these genes. METHODS: In patients undergoing primary endodontic treatment or retreatment, the root canals were aseptically accessed and sampled before endodontic procedures as well as after contemporary chemomechanical preparation and medication with calcium hydroxide. Identification of the following antibiotic resistance genes was performed by using polymerase chain reaction: bla(TEM-1), cfxA, blaZ, tetM, tetW, tetQ, vanA, vanD, and vanE. Limited phenotypic identification and antibiotic susceptibility verification were also performed. RESULTS: Overall, there were 45 specimens available for analysis, 30 from primary and 15 from persistent endodontic infections. In preoperative specimens, only bla(TEM-1) was significantly more prevalent in primary versus persistent infections (P = .04). After contemporary treatment procedures, there was an overall reduction in prevalence of these genes (P < .001). bla(TEM-1) and tetW were significantly reduced (P < .05), cfxA, blaZ, and tetQ were eliminated, but there was no change in tetM. No specimens contained vanA, vanD, or vanE. Antibiotic susceptibility testing showed significant differences among the antibiotics (P < .001) and general concordance with the gene findings. CONCLUSIONS: bla(TEM)(-1) was more prevalent in primary than persistent infections. Vancomycin resistance was not present. The genes identified were reduced with treatment except for tetM. Genetic testing might be useful as a screening tool for antibiotic resistance.201121924178
241610.9999Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. OBJECTIVE: The purpose of this study was twofold: survey samples from acute and chronic endodontic infections for the presence of genes encoding resistance to beta-lactams, tetracycline and erythromycin, and evaluate the ability of treatment to eliminate these genes from root canals. DESIGN: DNA extracts from samples of abscess aspirates (n=25) and root canals of teeth with asymptomatic apical periodontitis (n=24) were used as template for direct detection of the genes blaTEM, cfxA, tetM, tetQ, tetW, and ermC using real-time polymerase chain reaction (PCR). Bacterial presence was determined using PCR with universal bacterial primers. Root canals of the asymptomatic cases were also sampled and evaluated after chemomechanical procedures using NiTi instruments with 2.5% NaOCl irrigation. RESULTS: All abscess and initial root canal samples were positive for bacteria. At least one of the target resistance genes was found in 36% of the abscess samples and 67% of the asymptomatic cases. The most prevalent genes in abscesses were blaTEM (24%) and ermC (24%), while tetM (42%) and tetW (29%) prevailed in asymptomatic cases. The blaTEM gene was significantly associated with acute cases (p=0.02). Conversely, tetM was significantly more prevalent in asymptomatic cases (p=0.008). Treatment eliminated resistance genes from most cases. CONCLUSIONS: Acute and chronic endodontic infections harboured resistance genes for 3 classes of widely used antibiotics. In most cases, treatment was effective in eliminating these genes, but there were a few cases in which they persisted. The implications of persistence are unknown. Direct detection of resistance genes in abscesses may be a potential method for rapid diagnosis and establishment of proactive antimicrobial therapy.201323591127
564120.9998A 7-year survey of drug resistance in aerobic and anaerobic fecal bacteria of surgical inpatients: clinical relevance and relation to local antibiotic consumption. One-day studies of bacteriological cultures of fecal specimens obtained from 409 surgical inpatients at 5 occasions enabled rapid assessment of antibiotic resistance in aerobic and anaerobic bacteria, relevant to abdominal infection. This novel approach to surveillance of drug resistance was tested in a 7-year survey at a surgical department. A distinct correlation between local drug consumption and prevalence of resistant fecal bacteria was recorded for ampicillin and doxycycline. 17 other agents studied showed no such obvious correlations. Huge increases of cefuroxime and metronidazole consumption caused no emergence of drug resistant aerobic and anaerobic fecal bacteria. Imipenem was the only agent tested, which inhibited both the aerobic and anaerobic fecal bacteria of nearly all patients.19892617202
278730.9998Multiplex Polymerase Chain Reaction/Pooled Antibiotic Susceptibility Testing Was Not Associated with Increased Antibiotic Resistance in Management of Complicated Urinary Tract Infections. OBJECTIVE: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated. METHODS: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12). RESULTS: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, p = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, p = 0.04). CONCLUSION: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted.202337193300
563840.9998PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. BACKGROUND: The selection of antibiotic resistance genes during antibiotic therapy is a critical problem complicated by the transmission of resistance genes to previously sensitive strains via conjugative plasmids and transposons and by the transfer of resistance genes between gram-positive and gram-negative bacteria. The purpose of this investigation was to monitor the presence of selected tetracycline resistance genes in subgingival plaque during site specific tetracycline fiber therapy in 10 patients with adult periodontitis. METHOD: The polymerase chain reaction (PCR) was used in separate tests for the presence of 3 tetracycline resistance genes (tetM, tetO and tetQ) in DNA purified from subgingival plaque samples. Samples were collected at baseline, i.e., immediately prior to treatment, and at 2 weeks, and 1, 3, and 6 months post-fiber placement. The baseline and 6-month samples were also subjected to DNA hybridization tests for the presence of 8 putative periodontal pathogenic bacteria. RESULTS: PCR analysis for the tetM resistance gene showed little or no change in 5 patients and a decrease in detectability in the remaining 5 patients over the 6 months following tetracycline fiber placement. The results for tetO and tetQ were variable showing either no change in detectability from baseline through the 6-month sampling interval or a slight increase in detectability over time in 4 of the 10 patients. DNA hybridization analysis showed reductions to unmeasurable levels of the putative periodontal pathogenic bacteria in all but 2 of the 10 patients. CONCLUSIONS: These results complement earlier studies of tet resistance and demonstrate the efficacy of PCR monitoring for the appearance of specific resistance genes during and after antibiotic therapy.200010883874
563950.9997Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Quaternary ammonium compounds (QACs) are widely used as disinfectant in medical and food environments. There is a growing concern about the increasing incidence of disinfectant-resistant microorganisms from food. Disinfectant-resistant lactic acid bacteria (LAB) may survive disinfection and cause spoilage problems. Moreover, resistant LAB may potentially act as a reservoir for resistance genes. A total number of 320 LAB from food industry and meat were screened for resistance to the QAC benzalkonium chloride (BC). Out of 320 strains, five strains (1.5%) were considered to be resistant and 56 (17.5%) were tolerant to BC. The resistant strains were isolated from food processing equipment after disinfection. The resistant, tolerant, and some sensitive control bacteria were examined for susceptibility to 18 different antibiotics, disinfectants, and dyes using disc agar diffusion test and microdilution method. Little systematic cross-resistance between BC and any of the antimicrobial agents tested were detected except for gentamycin and chlorhexidine. A BC-tolerant strain was much easier to adapt to higher levels of BC as compared to a BC-sensitive strain. No known gram-positive QAC resistance genes (qacA/B, qacC, qacG, and qacH) were detected in the BC-resistant strains. Identification to species level of the BC-resistant isolates was carried out by comparative analysis of 16S-rDNA sequencing. In conclusion, resistance to BC is not frequent in LAB isolated from food and food environments. Resistance may occur after exposure to BC. The BC resistant isolates showed no cross-resistance with other antimicrobial compounds, except for gentamycin and chlorhexidine. Nevertheless, BC-resistant LAB may be isolated after disinfection and may contribute to the dissemination of resistance.200111310806
286860.9997Detection and Analysis of Drug and Disinfectant Resistance Genes in the Sewage of a Center for Disease Control and Prevention. PURPOSE: Sewage is a significant reservoir for drug and disinfectant resistance genes and a medium for dissemination. This study aimed to evaluate the presence of drug and disinfectant resistance genes in the sewage of a Center for Disease Control and Prevention (CDC) and to assess the risks of their dissemination. METHODS: Sewage from a CDC in Hangzhou was collected, filtered, and enriched, and its microorganisms were cultured. The isolated bacteria were identified, and the minimum inhibitory concentration (MIC) was determined. The drug and disinfectant resistance genes in the sewage and bacteria were detected through polymerase chain reaction amplification. RESULTS: Three kinds of bacteria were isolated from the sewage sample. The MIC for Sphingomonas and Staphylococcus xylosus against chlorine-containing disinfectants was 250 mg/L, whereas the MIC for Bacillus firmus was 500 mg/L. The β-lactam resistance gene TEM and the disinfectant resistance gene qacA were positive in the bacteria, whereas the β-lactam resistance genes TEM, SHV, and VIM-1, the tetracycline resistance gene tetM, the aminoglycoside resistance genes aac(6')/aph(2') and aph3'-III, and the disinfectant resistance genes qacA, qacE, and qacEΔ1 were positive in the sewage. CONCLUSION: Drug and disinfectant resistance genes were found in the sewage of a CDC and were associated with bacteria. Thus, optimizing the monitoring and treatment of sewage is crucial.202540303605
568770.9997The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance.202032646458
568880.9997Isolation and molecular identification of bacteria from sheep with eye infections. BACKGROUND: Ocular disease in sheep is a severe concern for the health and welfare of livestock animals, as well as losses of productivity and value to the livestock industry. AIM: This study aimed to isolate and characterize bacteria in sheep with eye disease on the molecular level. METHODS: One hundred fifty sheep with eye infections were treated, and tissue samples were taken for microbiological studies. We isolated bacteria from traditional cultures and discovered molecules by polymerase chain reaction (PCR) of single bacterial genes. RESULTS: A total of 150 ocular samples were collected from sheep, with bacterial growth observed in 120 samples, resulting in an isolation rate of 80%. Staphylococcus aureus was the most bacteria isolated in this study, which PCR also confirmed. We found antibiotic-resistant bacteria such as S. aureus, Escherichia coli, and Pasteurella multocida. These results reveal that preventing sheep ocular infections requires the effective use of antibiotics. CONCLUSION: This study suggests the prevalence of bacterial infection in sheep eyes and argues the utility of molecular methods in veterinary diagnosis. Record levels of antibiotic resistance must be maintained in animal husbandry and the use of antibiotic stewardship programs.202439927373
578890.9997Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. BACKGROUND: Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. METHODS: This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. RESULTS: The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. CONCLUSION: The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium.202540034266
5637100.9997Preparation and application of microarrays for the detection of antibiotic resistance genes in samples isolated from Changchun, China. The emergence of antibiotic-resistant bacteria, especially tetracycline- and beta-lactam-resistant bacteria, poses a great threat to human health. The purpose of this study was to develop and apply a suitable gene microarray for the detection of antibiotic resistance genes. We isolated 463 strains of bacteria from a hospital, a veterinary station, an animal nursery, and living environment of Changchun, China. After screening, it was found that 93.9% of these bacteria were resistant to tetracycline, 74.9% to ampicillin, 55.6% to deoxycycline, and 41.7% to ciprofloxacin. For amplification of antibiotic genes, we designed 28 pairs of primers. In addition, 28 hybridization probes for these genes were developed. The DNA microarray analysis was performed at 42 degrees C for 5 h. We were successful in detecting 12 resistance genes by microarray analysis. After detection, we also evaluated the sensitivity of the microarray analysis. The LDL (Lowest Detection Level) of the microarray was 1 x 10(6) copies/ml of template DNA. It is believed that such microarray-based determination of tetracycline and beta-lactam resistance genes can have a potential application in clinical studies in the future.201019642018
5643110.9997Antibiotic resistance gene profiling of faecal and oral anaerobes collected during an antibiotic challenge trial. Here we describe a study examining the antibiotic resistance gene carriage in anaerobes collected during a clinical study. The results demonstrated that genes normally associated with anaerobes were most prevalent such as tetQ, cepA and cblA although several genes associated with Enterobacteriaceae including sul2, blaSHV and strB were also detected.201323933434
2552120.9997Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. OBJECTIVES: This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND: The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS: We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS: Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS: Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.202032991620
5663130.9997Development of multiplex Luminex assays for the surveillance of antimicrobial resistance genes in nasal samples. Bovine respiratory disease (BRD) is the major cause of morbidity and mortality in feedlot cattle. It is the major driver for the therapeutic use of antimicrobials in feedlot cattle with their continued use and effectiveness being underpinned through the implementation of stewardship programs that include monitoring of resistance levels. To enable these programs, rapid and user-friendly assays are needed to detect antimicrobial resistance genes (ARG) for efficient monitoring. This study developed multiplex Luminex assays targeting 34 ARGs and validated them using reference strains of Pasteurellaceae and other bacteria, as well as field samples from nasal swabs of cattle (n = 94) undergoing BRD treatment at an Australian feedlot. One swab was collected from each nostril of every animal, with one being used for bacterial culture and conventional PCR analyses for ARGs, while the DNA extracted from the second swab was analyzed using the novel Luminex assays for the presence or absence of the ARGs of interest. The pathogens isolated by culture were tested for macrolide resistance genes erm(42), mph(E) and msr(E); sulfonamide resistance genes, sul1 and sul2; florfenicol resistance gene floR; β-lactam resistance gene bla(Rob-1) and tetracycline resistance genes tet(Q) and tet(Y), by conventional PCR. Kappa statistics suggested a moderate agreement between the tests in detecting the macrolide resistance genes. Luminex based analyses identified more resistance genes than PCR on cultured organisms, revealing the presence of a broader array of these genes than previously reported. In addition to detecting more genes, Luminex assays could process a higher number of samples in a single day, making them well-suited for ongoing surveillance of antimicrobial resistance in BRD affected cattle. This capability is essential for optimising therapeutic use and detecting emerging resistance patterns.202540848749
5647140.9997Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment.200312540187
5535150.9997Molecular and Phenotypic Evaluation of Antibiotic Resistance in Enteric Rods Isolated from the Oral Cavity. Gram-negative enteric rods (GNERs) are transient members of the oral microbiota and are considered a superinfection in patients with periodontitis that poses local and systemic risks due to associations with infections and multidrug resistance, including extended-spectrum beta-lactamases. These pathogens often resist antibiotics such as amoxicillin, doxycycline, and ciprofloxacin, complicating dental treatments. Though their resistance patterns vary, links between specific resistance genes and phenotypic resistance remain unclear. Objectives: To determine the correlation between resistance genes (blaTEM, blaSHV, tetQ, tetM, qnrB, qnrS, and mph(A)) and phenotypic resistance in GNERs isolated from oral cavity samples. Methods: A total of 90 oral isolates of GNERs were isolated from patients in a dental clinic, and bacteria were identified by the BD BBL Crystal biochemical panel. The antibiotic susceptibility testing was conducted through broth microdilution following CLSI standards for drives such as amoxicillin, amoxicillin/clavulanic acid, doxycycline, ciprofloxacin, and azithromycin. Resistance genes, including blaTEM, blaSHV, tetQ, tetM, qnrS, qnrB, and mph(A), were detected using polymerase chain reaction and gel electrophoresis. The proportions of species, resistance genes, and minimum inhibitory concentration values were statistically analyzed. Conclusions: As expected, most enteric bacteria showed natural resistance to beta-lactams. Significant resistance to azithromycin was observed in some species. Genotypic and phenotypic profiles suggest the existence of alternative resistance mechanisms; therefore, other mechanisms associated with antibiotic resistance should be investigated.202540558154
5550160.9997Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution.201525763135
2415170.9997Profiles of Staphyloccocus aureus isolated from goat persistent mastitis before and after treatment with enrofloxacin. BACKGROUND: Staphylococcus aureus is one of the main causative agents of mastitis in small ruminants. Antimicrobial use is the major treatment, but there are many flaws linked to resistance, tolerance or persistence. This study aimed to verify changes in resistance, virulence and clonal profiles of S. aureus isolated from persistent mastitis goat milk before and after enrofloxacin treatment. RESULTS: MIC increased to at least one antimicrobial in S. aureus isolates after enrofloxacin treatment compared to before. The most detected resistance genes before and after treatment were tetK, tetM, and blaZ, with more resistance genes detected after enrofloxacin treatment (p < 0.05). Occasional variations in efflux system gene detection were observed before and after treatment. Nine virulence genes (hla, fnbA, fnbB, eta, etb, sea, sec, seh, and sej) were detected at both times, and between these, the hla and eta genes were detected more in isolates after treatment. All isolates of S. aureus belonged to the same sequence type (ST) 133, except for two S. aureus isolates prior to enrofloxacin treatment which were classified as ST5 and the other as a new one, ST4966. Isolates of S. aureus 4, 8, and 100 from before and after treatment had identical pulse types, while others obtained from other animals before and after treatment were classified into distinct pulse types. CONCLUSION: There were occasional changes in the studied profiles of S. aureus isolated before and after treatment of animals with enrofloxacin, which may have contributed to the permanence of bacteria in the mammary gland, even when using traditional treatment, resulting in persistent mastitis.202032448145
5790180.9997Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. BACKGROUND & OBJECTIVE: Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. METHODS: Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. RESULTS: It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). CONCLUSION: Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical.202439687449
5284190.9997Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted.201931822712