Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
238801.0000Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes.201424948910
238910.9999Antibiotic Resistance of LACTOBACILLUS Strains. The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively).201931555856
539820.9999Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China. INTRODUCTION: Lactic acid bacteria (LAB) are commonly found in foods and are also natural intestinal inhabitants in humans and most animals. However, information regarding antimicrobial resistance and the transfer of resistance genes of LAB from fermented dairy products in China is limited. METHODOLOGY: In this study, LAB isolates (n = 82) of Lactobacillus (n = 43) and Streptococcus thermophilus (n = 39) were isolated from 51 commercial fermented food samples in China. All isolates were subjected to pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility, detecting resistance genes, as well as investigating the transferability of resistance genes. RESULTS: The 43 Lactobacillus isolates yielded 24 PFGE patterns and the 34 isolates of S. thermophilus generated 32 different PFGE patterns. Among the 43 Lactobacillus strains, the most commonly observed resistance was that to streptomycin (83.7%) and gentamycin (83.7%). Among the 39 S. thermophilus strains, the most frequently observed resistance was that to streptomycin (92.3%), gentamycin (87.2%), ciprofloxacin (79.5%), and chloramphenicol (71.8%), whereas the lowest level of resistance was that against erythromycin (7.7%). Antimicrobial resistance genes for erythromycin (emrB), gentamycin (aac(6')-aph(2")), streptomycin (ant(6)), sulfamethoxazole (sulI and sulII), tetracycline (tetM and tetS) were detected in the 18 resistance LAB strains. Conjugation experiments showed that tetM from L. delbrueckii subsp. bulgaricus R6 and tetS from L. plantarum R41 were successfully transferred to L. monocytogenes by filter mating. CONCLUSIONS: LAB strains could potentially act as reservoirs of resistance genes and play an active role in the transfer of resistance to humans via the food chain.201932036349
238730.9999Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Lactobacillus species play an important role in the host and although they are non-pathogenic, they could act as reservoirs for antibiotic resistance genes, with the potential risk of transfer to other bacteria inhabiting the gastrointestinal tract. The aim of this study was to identify Lactobacillus species derived from feces of domesticated pigeons and to characterize their phenotypic and genotypic antimicrobial resistance (AMR) profiles. A total of 57 Lactobacillus isolates were classified into six species using the MALDI-TOF technique and 16S rDNA restriction analysis. Strains of L. ingluviei (31%), L. salivarius (28%) and L. agilis (23%) were the dominant species isolated. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to kanamycin (89%), tetracycline (84%), streptomycin (63%), and enrofloxacin (37%). Less than 30% of the isolates were resistant to erythromycin, lincosamides, gentamycin, chloramphenicol and vancomycin. Over half (51%) of the lactobacilli were classified as multidrug resistant. Tet genes were detected in 79% of isolates; the lnuA, cat, ermB, ermC, ant(6)-Ia, ant(4')-Ia, and int-Tn genes were found at a lower frequency. Sequence analysis of the quinolone resistance-determining region (QRDR)of the gyrA gene showed that fluoroquinolone resistance in lactobacilli was the result of a mutation that lead to a change in the amino acid sequence (Ser83→Tyr/Leu/Phe). Domesticated pigeons could be a reservoir for AMR Lactobacillus strains and AMR genes.202032781109
539740.9999Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.202336746921
590650.9998Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. OBJECTIVE: To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probiotics. METHODS: Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. RESULTS: Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. CONCLUSION: Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.200920163065
239060.9998Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain. This study investigated the presence of Enterococcus spp. strains in camel faeces, their virulence factors, and resistance to the antibiotics commonly used as therapy of enterococcal infections. One hundred and seventy three Enterococcus strains were isolated and identified to species level using polymerase chain reaction (PCR). Susceptibility to 11 antimicrobials was determined by disk diffusion method. Minimal Inhibitory Concentrations (MIC) of penicillin, ampicillin, vancomycin, teicoplanin, gentamicin, and streptomycin were all determined. Genes encoding resistance to vancomycin, tetracycline, and erythromycin as well as genes encoding some virulence factors were identified by PCR. Enterococcus hirae (54.3%) and Enterococcus faecium (25.4%) were the species most frequently isolated. None of the strains were resistant to vancomycin, teicoplanin, ampicillin or showed high level aminoglycoside resistance (HLAR). Strains resistant to rifampicin (42.42%) were those most commonly found followed those resistant to trimethoprim - sulfamethoxazole (33.33%). The genes tetM, tetL, vanC1, and vanC2-C3 were detected in some strains. Virulence genes were not detected. Monitoring the presence of resistant strains of faecal enterococci in animal used with recreational purposes is important to prevent transmission of those strains to humans and to detect resistance or virulence genes that could be transferred to other clinically important bacteria.201526455369
243170.9998Bacteriocin production, antibiotic susceptibility and prevalence of haemolytic and gelatinase activity in faecal lactic acid bacteria isolated from healthy Ethiopian infants. The objective of this study was to characterise lactic acid bacteria (LAB) isolated from faecal samples of healthy Ethiopian infants, with emphasis on bacteriocin production and antibiotic susceptibility. One hundred fifty LAB were obtained from 28 healthy Ethiopian infants. The isolates belonged to Lactobacillus (81/150), Enterococcus (54/150) and Streptococcus (15/150) genera. Lactobacillus species were more abundant in the breast-fed infants while Enterococcus dominated the mixed-fed population. Bacteriocin-producing LAB species were isolated from eight of the infants. Many different bacteriocins were identified, including one new bacteriocin from Streptococcus salivarius, avicin A (class IIa) from Enterococcus avium, one class IIa bacteriocin from Enterococcus faecalis strains, one unknown bacteriocin from E. faecalis and two unknown bacteriocins from Lactobacillus fermentum strains and the two-peptide gassericin T from Lactobacillus gasseri isolate. Susceptibility tests performed for nine antibiotics suggest that some lactobacilli might have acquired resistance to erythromycin (3 %) and tetracycline (4 %) only. The streptococci were generally antibiotic sensitive except for penicillin, to which they showed intermediate resistance. All enterococci were susceptible to ampicillin while 13 % showed penicillin resistance. Only one E. faecalis isolate was vancomycin-resistant. Tetracycline (51 %) and erythromycin (26 %) resistance was prevalent among the enterococci, but multidrug resistance was confined to E. faecalis (47 %) and Enterococcus faecium (33 %). Screening of enterococcal virulence traits revealed that 2 % were β-haemolytic. The structural genes of cytolysin were detected in 28 % of the isolates in five enterococcal species, the majority being E. faecalis and Enterococcus raffinosus. This study shows that bacteriocin production and antibiotic resistance is a common trait of faecal LAB of Ethiopian infants while virulence factors occur at low levels.201323184155
539980.9998Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR. Also, the transferability of these resistance markers was assessed in filter mating assays. Of the 37 isolates, 33 were found to be resistant to one or more antibiotics. All strains were susceptible to ampicillin and chloramphenicol. The erm(B) and msrA/B genes were detected among the 11 erythromycin-resistant strains of enterococci, lactobacilli, and streptococci. Two tetracycline-resistant strains, Lactobacillus plantarum and Leuconostoc mesenteroides spp., contained tet(M) and tet(S) genes respectively. Intrinsic streptomycin resistance was observed in lactobacilli, streptococci, lactococci and Leuconostoc species; none of the common genetic determinants (strA, strB, aadA, aadE) were identified. Four of 10 strains of Enterococcus faecium were resistant to vancomycin; however, no corresponding genetic determinants for this phenotype were identified. Enterococcus faecalis strains were susceptible to vancomycin. L. plantarum, L. mesenteroides and Pediococcus pentosaceus were intrinsically resistant to vancomycin. Transfer of antibiotic resistance determinants was demonstrated in one strain, wherein the tet(M) gene of L. plantarum (23) isolated from a pork abattoir was transferred to Lactococcus lactis BU-2-60 and to E. faecalis JH2-2. This study identified the presence of antibiotic resistance markers in Irish meat isolates and, in one example, resistance was conjugally transferred to other LAB strains.201020074643
290990.9998Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance.200616330169
2406100.9998Prevalence of antibiotic resistance genes in staphylococci isolated from ready-to-eat meat products. Prevalence of mecA, blaZ, tetO/K/M, ermA/B/C, aph, and vanA/B/C/D genes conferring resistance to oxacillin, penicillin, tetracycline, erythromycin, gentamicin, and vancomycin was investigated in 65 staphylococcal isolates belonging to twelve species obtained from ready-to-eat porcine, bovine, and chicken products. All coagulase negative staphylococci (CNS) and S. aureus isolates harbored at least one antibiotic resistance gene. None of the S. aureus possessed more than three genes, while 25% of the CNS isolates harbored at least four genes encoding resistance to clinically used antibiotics. In 15 CNS isolates the mecA gene was detected, while all S. aureus isolates were mecA-negative. We demonstrate that in ready-to-eat food the frequency of CNS harboring multiple antibiotic resistance genes is higher than that of multiple resistant S. aureus, meaning that food can be considered a reservoir of bacteria containing genes potentially contributing to the evolution of antibiotic resistance in staphylococci.201222844699
5534110.9998Antibiotic resistance in faecal microbiota of Greek healthy infants. Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.201021831766
5538120.9998Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed.201728601447
5428130.9998Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses. BACKGROUND: This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. METHODS: Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. RESULTS: A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. CONCLUSIONS: In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.201423659425
2399140.9998Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat. Food-borne enterococci could be carriers of antibiotic resistance determinants. The goal of this work was to study the characteristics of Enterococcus spp. in fermented milk products from Poland and their antibiotic resistance gene profiles. A total of 189 strains were isolated from 182 dairy products out of 320 samples tested. The predominant species were Enterococcus faecium (53.4%) and Enterococcus faecalis (34.4%). Isolates were resistant to streptomycin (29.1%), erythromycin (14.3%), tetracycline (11.6%), rifampicin (8.7%), and tigecycline (8.1%). We also detected 2 vancomycin-resistant and 3 linezolid-resistant strains; however, no vanA or vanB genes were identified. A total of 57 high-level aminoglycoside resistance strains (30.2%) were identified, most of which have the ant(6')-Ia gene, followed by the aac(6')-Ie-aph(2″)-Ia and aph(3″)-IIIa genes. Resistance to tetracycline was most often conferred by tetM and tetL genes. Macrolide resistance was most frequently encoded by ermB and ermA genes. Conjugative mobile genetic element (transposon Tn916-Tn1545) was identified in 15.3% of the strains, including 96.3% of strains harboring the tetM gene. This study found that enterococci are widely present in retail ready-to-eat dairy products in Poland. Many isolated strains are antibiotic resistant and carry transferable resistance genes, which represent a potential source of transmission of multidrug-resistant bacteria to humans.202032197843
2910150.9998Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.201020661548
2908160.9998Detection of tetracycline and macrolide resistance determinants in Enterococci of animal and environmental origin using multiplex PCR. An occurrence of resistance to tetracycline (TET) and erythromycin (ERY) was ascertained in 82 isolates of Enterococcus spp. of animal and environmental origin. Using E test, 33 isolates were resistant to TET and three isolates to ERY. Using polymerase chain reaction (PCR; single and multiplex), the TET determinants tet(M) and tet(L) were detected in 35 and 13 isolates, respectively. Twelve isolates carried both tet(M) and tet(L) genes. Eight isolates possessed ermB gene associated with ERY resistance. Multiplex PCR was shown to be a suitable method for simultaneous determination of all three resistance determinants that occurred most frequently in bacteria isolated from poultry. This study also demonstrates that gastrointestinal tract of broilers may be a reservoir of enterococci with acquired resistance to both TET and ERY that can be transferred to humans via food chain.201121656006
5533170.9998Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. INTRODUCTION: Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES: This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS: Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS: A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION: Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources.202337208603
2397180.9998Antimicrobial resistance in Enterococcus strains isolated from healthy domestic dogs. Enterococci are opportunistic bacteria that cause severe infections in animals and humans, capable to acquire, express, and transfer antimicrobial resistance. Susceptibility to 21 antimicrobial agents was tested by the disk diffusion method in 222 Enterococcus spp. strains isolated from the fecal samples of 287 healthy domestic dogs. Vancomycin and ampicillin minimum inhibitory concentrations (MICs) and high-level aminoglycoside resistance (HLAR) tests were also performed. Isolates showed resistance mainly to streptomycin (88.7%), neomycin (80.6%), and tetracycline (69.4%). Forty-two (18.9%) isolates showed an HLAR to streptomycin and 15 (6.7%) to gentamicin. Vancomycin and ampicillin MIC values showed 1 and 18 resistant strains, respectively. One hundred and thirty-six (61.2%) strains were classified as multidrug resistant and six (2.7%) strains as possibly extensively drug-resistant bacteria. Enterococcus faecium and Enterococcus faecalis were the most prevalent antimicrobial resistant species. Companion animals, which often live in close contact with their owners and share the same environment, represent a serious source of enterococci resistant to several antibiotics; for this reason, they may be a hazard for public health by providing a conduit for the entrance of resistance genes into the community.201727976593
5902190.9998Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.201728355096