# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2366 | 0 | 1.0000 | Vancomycin-variable enterococci in sheep and cattle isolates and whole-genome sequencing analysis of isolates harboring vanM and vanB genes. BACKGROUND: Vancomycin resistance encoded by the vanA/B/M genes in enterococci is clinically important because of the transmission of these genes between bacteria. While vancomycin resistance is determined by detecting only vanA and vanB genes by routine analyses, failure to detect vanM resistance causes vancomycin resistance to be overlooked, and clinically appropriate treatment cannot be provided. AIMS: The study aimed to examine the presence of vanM-positive enterococcal isolates in Ankara, Turkey, and to have detailed information about them with sequence analyses. METHODS: Caecal samples were collected from sheep and cattle during slaughter at different slaughterhouses in Ankara, Turkey. Enterococci isolates were identified, confirmed, and analyzed for the presence of vanA/B/M genes. Antibiotic resistance profiles of isolates were determined by the broth microdilution method. A whole genome sequence analysis of the isolates harboring the vanM and vanB genes was performed. RESULTS: 13.7% of enterococcal isolates were determined as Enterococcus faecium and Enterococcus faecalis. 15% of these isolates contained vanB, and 40% were vanM-positive. S98b and C32 isolates were determined to contain 16 CRISPR-Cas elements. 80% of the enterococci isolates were resistant to nitrofurantoin and 15% to ciprofloxacin. The first vanM-positive vancomycin-variable enterococci (VVE) isolates from food-producing animals were identified, and the S98b strain has been assigned to Genbank with the accession number CP104083.1. CONCLUSION: Therefore, new studies are needed to facilitate the identification of vanM-resistant enterococci and VVE strains. | 2023 | 38269016 |
| 2349 | 1 | 0.9996 | DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene. | 2024 | 39724880 |
| 5778 | 2 | 0.9996 | A Simple and Rapid Low-Cost Procedure for Detection of Vancomycin-Resistance Genes in Enterococci Reveals an Outbreak of Vancomycin-Variable Enterococcus faecium. The detection of resistance to vancomycin in enterococci cultured from patients is important for the treatment of individual patients and for the prevention of hospital transmission. Phenotypic antimicrobial resistance tests may fail to detect potential vancomycin-resistant enterococci. We have developed and tested a PCR based procedure for routine screening for vancomycin-resistance genes in clinical samples with enterococci. Primary cultures from diagnostic samples reported with growth of Enterococcus faecium or E. facalis were tested for vanA and vanB genes by real-time PCR without the isolation of specific bacteria. Up to ten samples were pooled and tested in each real-time PCR reaction, with subsequent individual testing of cultures from positive pools. In a one-month test period in 2017 vanA gene was detected in one out of 340 urine samples with vancomycin-susceptible enterococci reported from diagnostic culture. A second test period in 2018 included 357 urine samples, and vanA gene was detected in samples from eight patients. Subsequently, all urine samples reported with growth of E. faecium during a period of one year were tested. Fifty-eight individuals were identified with enterococci, carrying the vanA gene not previously detected. Routine molecular testing of primary culture material from patient samples may improve the detection of hospitalized patients carrying E. faecium with resistance genes to vancomycin. | 2022 | 36140520 |
| 5428 | 3 | 0.9996 | Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses. BACKGROUND: This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. METHODS: Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. RESULTS: A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. CONCLUSIONS: In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated. | 2014 | 23659425 |
| 2350 | 4 | 0.9996 | Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. OBJECTIVE: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. METHODS: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. RESULTS: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. CONCLUSION: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment. | 2024 | 38933775 |
| 2385 | 5 | 0.9996 | Molecular characterization of multi-drug-resistant Staphylococcus aureus in mastitis bovine milk from a dairy farm in Anhui, China. Mastitis is an economically important disease in the dairy industry, which is caused by various infectious pathogens. There is limited information known about the situation of drug resistance and virulence factors of Staphylococcus aureus (S. aureus) in mastitis bovine milk in Anhui. Therefore, a total of 125 fresh milk samples from clinically mastitis-positive bovine animals were collected. The bacteria pathogens were identified via bacterial culture, Gram staining, biochemical analysis, DNA extraction, 16s rRNA amplification, and phylogenetic analysis. Drug resistance analyses were performed through drug-resistant genes and virulence genes amplification. Results showed that a total of 24.8% (31/125) bacterial isolates were isolated and identified as S. aureus by Gram straining, biochemical reactions, and 16 s rRNA genes blasting. Multiple sequence alignment analysis found that the current isolates were highly similar (96.9-100.0%) to previous isolates. Phylogenetic analysis demonstrated that S. aureus was similar with MK809241.1 isolated from food in China and wCP030426.1 isolated from a person in the United States. The bacterial isolates were detected resistant to 11 antibiotics, such as Penicillin G, SXT, Ciprofloxacin, Norfloxacin, Polymyxin B, Levofloxacin, Chloramphenicol, Clindamycin, Clarithromycin, Erythromycin, and Spectinomycin. Drug-resistant genes of blaZ, ermC, rpoB, and ant (4')-la were successfully amplified. Virulence genes of hla, nuc, clfa, and eta were found in S. aureus bacteria. The current study isolated S. aureus from milk samples and revealed its drug-resistant situation, drug-resistant genes, and virulence genes. Hence, regular monitoring of S. aureus in milk samples from dairy cows may contribute to the prevention and treatment of public health concerns causing bacteria in this region. | 2022 | 36072389 |
| 2670 | 6 | 0.9996 | Molecular characterisation and antimicrobial resistance of Streptococcus agalactiae isolates from dairy farms in China. INTRODUCTION: Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. MATERIAL AND METHODS: A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. RESULTS: The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. CONCLUSION: The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria. | 2023 | 38143824 |
| 2146 | 7 | 0.9996 | Study of aminoglycoside resistance genes in enterococcus and salmonella strains isolated from ilam and milad hospitals, iran. BACKGROUND: Aminoglycosides are a group of antibiotics that have been widely used in the treatment of life-threatening infections of Gram-negative bacteria. OBJECTIVES: This study aimed to evaluate the frequency of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from clinical samples by PCR. MATERIALS AND METHODS: In this study, 140 and 79 isolates of Enterococcus and Salmonella were collected, respectively. After phenotypic biochemical confirmation, 117 and 77 isolates were identified as Enterococcus and Salmonella, respectively. After the biochemical identification of the isolates, antibiotic susceptibility for screening of resistance was done using the Kirby-Bauer method for gentamicin, amikacin, kanamycin, tobramycin and netilmycin. DNA was extracted from resistant strains and the presence of acc (3)-Ia, aac (3')-Ib, acc (6)-IIa ,16SrRNA methylase genes (armA and rat) was detected by PCR amplification using special primers and positive controls. RESULTS: Enterococcus isolates have the highest prevalence of resistance to both kanamycin and amikacin (68.4%), and Salmonella isolates have the highest prevalence of resistance against kanamycin (6.9%). Ninety-three and 26 isolates of Enterococcus and Salmonella at least were resistant against one of the aminoglycosides, respectively. Moreover, 72.04%, 66.7%, and 36.6% of the resistant strains of Enterococcus had the aac (3')-Ia, aac (3')-IIa, and acc (6')-Ib genes, respectively. None of the Salmonella isolates have the studied aminoglycoside genes. CONCLUSIONS: Our results indicate that acetylation genes have an important role in aminoglycoside resistance of the Enterococcus isolates from clinical samples. Moreover, Salmonella strains indicate very low level of aminoglycoside resistance, and aminoglycoside resistance genes were not found in Salmonella isolates. These results indicate that other resistance mechanisms, including efflux pumps have an important role in aminoglycoside resistance of Salmonella. | 2015 | 26034551 |
| 2420 | 8 | 0.9995 | Distribution of erm(F) and tet(Q) genes in 4 oral bacterial species and genotypic variation between resistant and susceptible isolates. BACKGROUND: Bacteroides forsythus, Porphyromonas gingivalis and Prevotella intermedia are Gram-negative anaerobic bacteria that are currently considered potential periopathogens. Prevotella nigrescens has recently been separated from P. intermedia and its rôle in periodontitis is unknown. The erm(F) gene codes for an rRNA methylase, conferring resistance to macrolides, lincosamides and streptogramin B (MLSB), and the tet(Q) gene for a ribosomal protection protein, conferring resistance to tetracycline. The presence of these resistance genes could impair the use of antibiotics for therapy. PURPOSE: The aim of this study was to determine the carriage of erm(F) and tet(Q), and genetic variability of 12 Porphyromonas gingivalis, 10 Prevotella intermedia, 25 Prevotella nigrescens and 17 Bacteroides forsythus isolates from 9 different patient samples. METHODS: We used polymerase chain reaction (PCR) for detecting antibiotic resistance genes, and pulsed-field gel electrophoresis (PFGE) for detecting genetic variability among the isolates. RESULTS: Thirty-one (48%) isolates were resistant to both erythromycin and tetracycline and carried the erm(F) and tet(Q) genes, eight (13%) were tetracycline resistant and carried the tet(Q) gene, 9 (14%) were erythromycin resistant and carried the erm(F) gene, and 12 (19%) isolates did not carry antibiotic resistance genes. PFGE was used to compare isolates from the same patient and isolates from different patient samples digested with XbaI. No association was found between antibiotic resistance gene carriage and PFGE patterns in any species examined. All isolates of the same species from the same patient had highly related or identical PFGE patterns. Isolates of same species from different patients had unique PFGE pattern for each species tested. CONCLUSION: All isolates of the same species from any one patient were genetically related to each other but distinct from isolates from other patients, and 66% of the patients carried antibiotic resistant isolates, which could impair antibiotic therapy. | 2002 | 11895543 |
| 5941 | 9 | 0.9995 | Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy. | 2011 | 21081549 |
| 2909 | 10 | 0.9995 | Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance. | 2006 | 16330169 |
| 2390 | 11 | 0.9995 | Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain. This study investigated the presence of Enterococcus spp. strains in camel faeces, their virulence factors, and resistance to the antibiotics commonly used as therapy of enterococcal infections. One hundred and seventy three Enterococcus strains were isolated and identified to species level using polymerase chain reaction (PCR). Susceptibility to 11 antimicrobials was determined by disk diffusion method. Minimal Inhibitory Concentrations (MIC) of penicillin, ampicillin, vancomycin, teicoplanin, gentamicin, and streptomycin were all determined. Genes encoding resistance to vancomycin, tetracycline, and erythromycin as well as genes encoding some virulence factors were identified by PCR. Enterococcus hirae (54.3%) and Enterococcus faecium (25.4%) were the species most frequently isolated. None of the strains were resistant to vancomycin, teicoplanin, ampicillin or showed high level aminoglycoside resistance (HLAR). Strains resistant to rifampicin (42.42%) were those most commonly found followed those resistant to trimethoprim - sulfamethoxazole (33.33%). The genes tetM, tetL, vanC1, and vanC2-C3 were detected in some strains. Virulence genes were not detected. Monitoring the presence of resistant strains of faecal enterococci in animal used with recreational purposes is important to prevent transmission of those strains to humans and to detect resistance or virulence genes that could be transferred to other clinically important bacteria. | 2015 | 26455369 |
| 2367 | 12 | 0.9995 | Vancomycin resistant Streptococcus equi subsp. equi isolated from equines suffering from respiratory manifestation in Egypt. BACKGROUND AND AIM: Upper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically. MATERIALS AND METHODS: S. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as b-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA). RESULTS: Eight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene. CONCLUSION: In this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt. | 2021 | 34475702 |
| 2359 | 13 | 0.9995 | Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds. Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton-Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood. | 2021 | 34357963 |
| 2660 | 14 | 0.9995 | Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria. | 2021 | 33934873 |
| 2657 | 15 | 0.9995 | Investigating the Prevalence of Enterotoxin and Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Meat and Edible Viscera of Broiler Chickens. BACKGROUND: The responsible for staph infection is methicillin-resistant Staphylococcus aureus (MRSA) which has a long and difficult treatment process due to resistance to this type of antibiotic. This study is designed to investigate the distribution and frequency of antibiotic-resistant genes and MRSA enterotoxins isolated from the meat and edible viscera of broiler chickens, which are responsible for pathogenicity in humans. MATERIALS AND METHODS: A total of 523 meat and edible viscera of broiler chicken collected from farms in Shahrekord, Iran. The antibiogram test of 142 MRSA isolates was performed by Kirby-Bauer diffusion disc. Sensitivity or resistance of MRSA was tested on 13 different antibiotics. DNA extracted from MRSA was screened by PCR technique for the presence of antibiotic-resistant and enterotoxin genes. RESULTS: Staphylococcus aureus (S. aureus) isolated with frequency of 51.05% (267 of 523). The presence of mecA gene in S. aureus was examined to detect the MRSA. The most antibiotic-resistance responsible genes and the pathogenic enterotoxin genes were identified. MRSA was identified by positive amplification of mecA in 53.18% (142 of 267) of S. aureus isolates. S. aureus antimicrobial resistance was most frequently noted against tetracycline (94.37%), ampicillin (88.73%) and penicillin (71.83%). Out of 51 examined isolates, 47 isolates exhibited the sea (92.15%), and 7 isolates exhibited the sej (13.72%). CONCLUSION: The results indicated high prevalence of MRSA in broilers, which is very worrying issue. In addition, in the present study, it was observed that due to the increase in the use of antibiotics in poultry farming, bacteria resistant to methicillin and other antibiotics have a high prevalence. Now, with the knowledge that the consumption of broiler chicken is very high all over the world and with the increasing trend of antibiotic consumption, this issue has become a concern at the global health level. The presence of antibiotic-resistance and enterotoxigenic genes in MRSA bacteria is a critical threat to human nutrition, making consuming contaminated meat and edible viscera of broiler chickens unsafe. | 2025 | 40613255 |
| 2692 | 16 | 0.9995 | Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated From Poultry Carcasses. BACKGROUND: Campylobacter is one of the leading bacterial species causing foodborne illnesses in humans. Antimicrobial agents have been extensively used for treatment of Campylobacter infections; but in the recent years, both animal and human isolates of this bacterium have shown resistance to several antibiotics such as tetracycline. OBJECTIVES: The aim of this study was to investigate the presence of genetic determinants of tetracycline resistance in Campylobacter spp. recovered from poultry carcasses in Shiraz, Iran. MATERIALS AND METHODS: Eighty-three thermophilic Campylobacter spp. Isolates were first identified based on multiplex polymerase chain reaction (PCR) and then screened for presence of tetracycline resistance genes (tet (A), tet (B), tet (O) and te (S)) by PCR. RESULTS: The overall prevalence of Campylobacter jejuni and C. coli among the examined isolates was 51.8% and 48.2%, respectively. Tetracycline resistance genes of tet (B) and tet (S) were not seen among these Campylobacter spp. Isolates, whereas the most common tet gene identified was tet (O), found in 83.1% (69/83) of all the isolates. The tet (O) gene sequence comparison between C. jejuni and C. coli showed 100% similarity and these sequences (JX853721and JX853722) were also identical to the homologous sequences of other strains of Campylobacter spp. existing in the GenBank databases. In addition, tet (A) was found in 18% (15/83) of Campylobacter spp. isolates. To our knowledge, this represents the first report of tet (A) in Campylobacter spp. There was 100% homology between the sequences of tet (A) from this study (JX891463 and JX891464) and the tet (A) sequences mentioned for other bacteria in the GenBank databases. CONCLUSIONS: The high prevalence of tet (O) resistance gene along with new detection of tet (A) resistance gene in Campylobacter spp. isolated from poultry carcasses revealed an extensive tetracycline resistance among Campylobacter isolates from poultry in Iran. It emphasized the need for cautious use of tetracycline in poultry production to decrease the extension of tetracycline-resistant Campylobacter spp. | 2014 | 25485062 |
| 5429 | 17 | 0.9995 | Antibiotic resistance pattern of Bacteroides fragilis isolated from clinical and colorectal specimens. BACKGROUND: Bacteroides fragilis is a part of the normal gastrointestinal flora, but it is also the most common anaerobic bacteria causing the infection. It is highly resistant to antibiotics and contains abundant antibiotic resistance mechanisms. METHODS: The antibiotic resistance pattern of 78 isolates of B. fragilis (22 strains from clinical samples and 56 strains from the colorectal tissue) was investigated using agar dilution method. The gene encoding Bacteroides fargilis toxin bft, and antibiotic resistance genes were targeted by PCR assay. RESULTS: The highest rate of resistance was observed for penicillin G (100%) followed by tetracycline (74.4%), clindamycin (41%) and cefoxitin (38.5%). Only a single isolate showed resistance to imipenem which contained cfiA and IS1186 genes. All isolates were susceptible to metronidazole. Accordingly, tetQ (87.2%), cepA (73.1%) and ermF (64.1%) were the most abundant antibiotic-resistant genes identified in this study. MIC values for penicillin, cefoxitin and clindamycin were significantly different among isolates with the cepA, cfxA and ermF in compare with those lacking such genes. In addition, 22.7 and 17.8% of clinical and GIT isolates had the bft gene, respectively. CONCLUSIONS: The finding of this study shows that metronidazole is highly in vitro active agent against all of B. fragilis isolates and remain the first-line antimicrobial for empirical therapy. | 2021 | 33892721 |
| 5940 | 18 | 0.9995 | In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. OBJECTIVES: Prior to the renewal of spectinomycin licensing for veterinary uses in Germany, 154 Pasteurella multocida and 148 Mannheimia haemolytica strains from respiratory tract infections in cattle were investigated for their MICs of spectinomycin and other antimicrobial agents. The data obtained should serve as a baseline from which to judge the future development of resistance. Moreover, the in vitro activity of spectinomycin in comparison with other antimicrobials should be assessed. METHODS: MIC determination for all 302 strains was performed by the broth dilution method and evaluated according to NCCLS standards. MIC(50) and MIC(90) values were calculated. Strains resistant to spectinomycin were subjected to PCR assays for genes known to mediate spectinomycin resistance in Gram-negative and Gram-positive bacteria. RESULTS: With the exception of resistance to sulfamethoxazole in P. multocida and M. haemolytica, and resistance to ampicillin in M. haemolytica, an overall low level of resistance was detected. A total of 93.5% of the P. multocida and 98.6% of the M. haemolytica strains were susceptible to spectinomycin, with MIC(90)s of 32 mg/L. PCR analysis showed that none of the spectinomycin-resistant strains carried any of the aadA gene subtypes, nor the genes spc or aad(9). CONCLUSIONS: Prior to the renewal of spectinomycin, only a small number of spectinomycin-resistant strains was detected among bovine P. multocida and M. haemolytica. The genes responsible for spectinomycin resistance in these strains seemed to be different from those so far known to occur in other Gram-negative and Gram-positive bacteria. | 2004 | 14729757 |
| 2346 | 19 | 0.9995 | Antibiotic resistance genes and molecular typing of Streptococcus agalactiae isolated from pregnant women. BACKGROUND: The antibiotic resistance of genital tract colonizing Streptococcus agalactiae in pregnant women is increasing. We aimed to determine the antibiotic resistance genes of different clonal types of this bacterium in pregnant women. METHODS: Four hundred twenty non-repeated vaginal and rectal specimens were collected from pregnant women and were transferred to the laboratory using Todd Hewitt Broth. The samples were cultured on a selective medium, and the grown bacteria were identified by standard microbiological and biochemical tests. Antimicrobial resistance pattern and inducible clindamycin resistance of the isolates were determined using the disk agar diffusion method. The genomic DNAs of S. agalactiae strains were extracted using an extraction kit, and the antibiotic resistance genes and RAPD types were detected using the PCR method. RESULTS: The average age of the participants was 30.74 ± 5.25 years. There was a significant relationship between the weeks of pregnancy and the number of positive bacterial cultures (P-value < 0.05). Moreover, 31 pregnant women had a history of abortion, and 18 had a history of membrane rupture. Among 420 specimens, 106 S. agalactiae isolates were detected. The highest antibiotic resistance rate was found against tetracycline (94.33%), and all isolates were susceptible to linezolid. Moreover, 15, 15, 42, and 7 isolates showed an iMLS(B), M-, cMLS(B), and L-phenotype. The ermB was the most prevalent resistance gene in the present study, while 38 (35.84%), 8 (7.54%), 79 (74.52%), 37 (34.9%), and 20 (18.86%) isolates were contained the ermTR, mefA/E, tetM, tetO, and aphA3 gene, respectively. CONCLUSIONS: The high-level antibiotic resistance and prevalence of resistance genes may be due to the arbitrarily use, livestock industry consumption, and the preventive use of antibiotics in pregnant women. Thus, the need to re-considering this problem seems to be necessary. | 2023 | 36658541 |