Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
236301.0000Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected.202337840716
235510.9999Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level.201224669633
236220.9999Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou. AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.202438638249
235630.9999Occurrence of Multiple-Drug Resistance Bacteria and Their Antimicrobial Resistance Patterns in Burn Infections from Southwest of Iran. Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.202234236077
230940.9999Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.202439139624
235450.9999Resistance profiles of Staphylococcus aureus isolates against frequently used antibiotics at private sector laboratories in Jordan. BACKGROUND AND OBJECTIVES: Staphylococcus aureus (S. aureus) is one of the most important pathogens, responsible for a range of infections. This study aimed to assess resistance patterns in S. aureus isolates obtained from certain private-sector laboratories against commonly used antimicrobial agents. MATERIALS AND METHODS: The process involved collecting various samples from several private laboratories and then identifying S. aureus isolates using biochemical characterization. The antibiotic susceptibility of these isolates was determined by disc diffusion method. Furthermore, Rt-PCR was employed to identify two genes namely the methicillin/oxacillin resistance genes (mecA), and (SCCmec). RESULTS: The findings of the current study exhibited that females constituted a larger proportion of the participants (59.1%) compared to males (40.9%), with a mean participant age of 40.82 years. Gram-positive bacteria were more prevalent (71.3%) than Gram-negative bacteria (18.3%), with S. aureus being the most frequent isolate (60.9%). Urine samples represented the highest collected sample type (47.8%). Out of the 115 bacterial isolates, 85.2% exhibited multidrug resistance to antibiotics such as cefazolin, gentamicin, vancomycin, and ceftazidime. Clindamycin was the most effective antibiotic, with a sensitivity rate of 62.9%, followed by teicoplanin and meropenem, each with a sensitivity rate of 52.9%. Methicillin-resistant Staphylococcus aureus (MRSA) strains were susceptabile to vancomycin and teicoplanin. The methicillin/oxacillin resistant isolates showed significant association with mecA and SCCA genes. CONCLUSION: This study highlighted the multi-drug resistance in S. aureus isolates, stressing the need for stringent antibiotic stewardship, continuous surveillance, and further research into alternative treatments, including novel antibiotics and combination therapy, to combat resistant strains.202540337673
579060.9999Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. BACKGROUND & OBJECTIVE: Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. METHODS: Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. RESULTS: It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). CONCLUSION: Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical.202439687449
578870.9998Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. BACKGROUND: Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. METHODS: This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. RESULTS: The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. CONCLUSION: The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium.202540034266
231680.9998Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
236190.9998Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. OBJECTIVE: This study aimed to compare the identification efficiency of metagenome next generation sequencing (mNGS) and traditional methods in detecting pathogens in patients with severe bacterial pneumonia (BP) and further analyze the drug resistance of common pathogens. METHODS: A total of 180 patients with severe BP who were admitted to our hospital from June 2017 to July 2020 were selected as the research objects. Alveolar lavage fluid from the patients were collected, and pathogens were detected by the mNGS technology and traditional etiological detection technology. Common pathogens detected by mNGS were tested for the drug sensitivity test. The difference between mNGS and traditional detection method in the identification of pathogenic bacteria in severe BP patients was compared, and the distribution characteristics and drug resistance of pathogenic bacteria were analyzed. RESULTS: The positive rate of mNGS detection was 92.22%, which was significantly higher than that of the traditional culture method (58.33%, P < 0.05). 347 strains of pathogenic bacteria were detected by mNGS, including 256 strains of Gram-negative bacteria (G(-)), 89 strains of Gram-positive bacteria (G(+)), and 2 strains of fungi. Among G(-) bacteria, Acinetobacter baumannii had higher resistance to piperacillin/tazobactam, ceftazidime, imipenem, levofloxacin, amikacin, ciprofloxacin, gentamicin, and the lowest resistance to tigecycline. The resistance of Klebsiella pneumoniae to piperacillin/tazobactam and ceftazidime was higher. Pseudomonas aeruginosa had low resistance to all the drugs. Escherichia coli had high drug resistance to most drugs, and the drug resistant rates to cefoperazone/sulbactam, piperacillin/tazobactam, ceftazidime, imipenem, and gentamicin were all more than 50.00%. G(+) bacteria had high resistance to penicillin, azithromycin, amoxicillin and levofloxacin, and amoxicillin and levofloxacin had high resistance, up to 100.00%. CONCLUSION: mNGS has high sensitivity for the identification of pathogenic bacteria in patients with BP. G(-) bacteria were the main pathogens of BP, but both G(-) and G(+) bacteria had high resistance to a variety of antibacterial drugs.202236262997
2308100.9998Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted.202337307126
2311110.9998Serious antimicrobial resistance status of pathogens causing hospital-acquired lower respiratory tract infections in North China. Antimicrobial resistance patterns of pathogens causing hospital-acquired lower respiratory tract infections (LRTIs) in Shandong Province, China were investigated using data collected from January 2002 to December 2006. A total of 10 337 isolates were characterized in sputum samples from 39 920 LRTI patients: 68.72% were Gram-negative bacteria, 20.65% were Gram-positive bacteria, and 10.62% were fungi. Organisms most frequently isolated were: Pseudomonas aeruginosa (16.88%), Klebsiella pneumoniae (10.80%), Escherichia coli (10.71%), fungi (10.62%), Staphylococcus aureus (9.68%) and Acinetobacter baumannii (9.03%). Imipenem was the most effective antibiotic against Gram-negative bacteria. Most Gram-positive bacteria were susceptible to vancomycin. Susceptibility to cephalosporins was not optimal and resistance to fluoroquinolones was high. Resistance of Gram-negative bacteria showed a rapid increase over the study period, while resistance of Gram-positive bacteria remained relatively stable. The emergence of resistance to commonly prescribed antimicrobial agents used against LRTI pathogens has compounded the problem of using empirical therapy and created selective pressure on physicians to use certain antibiotics.200919589276
2165120.9998Distribution and analysis of the resistance profiles of bacteria isolated from blood cultures in the intensive care unit. PURPOSE: To investigate the distribution characteristics and drug resistance of pathogenic bacteria in bloodstream infections, providing a basis for rational clinical treatment. PATIENTS AND METHODS: Retrospective analysis of 1,282 pathogenic strains isolated from blood cultures in the intensive care unit (ICU) of the Second Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to December 31, 2022. RESULTS: Gram-positive bacteria (52.0%) slightly predominated over gram-negative bacteria (48.0%). The top three gram-positive bacteria were Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (7.4%), and Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin or linezolid were found. Among the Enterococci, Enterococcus faecium had a high resistance rate to penicillin, ampicillin, and erythromycin. Two strains of Enterococcus faecalis were resistant to linezolid, but none to vancomycin. The top three gram-negative bacteria were Escherichia coli (14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%). The resistance rate of Escherichia coli to carbapenems increased from 0.0 to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance to various carbapenems. CONCLUSION: The isolation rate of gram-positive bacteria in patients with bloodstream infection in the ICU of the Second Affiliated Hospital of Xi'an Jiaotong University was slightly higher than that of gram-negative bacteria. The alarming carbapenem resistance among gram-negative pathogens and emerging linezolid resistance in Enterococci demand urgent clinical interventions, including enhanced surveillance, antimicrobial stewardship, and novel therapeutic strategies.202540727562
5786130.9998Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.202134574752
2318140.9998Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected.202032944333
853150.9998Nosocomial Pneumonia in Georgia: A Focus on Gram-Positive Bacteria and Antimicrobial Resistance. Nosocomial pneumonia represents a significant clinical challenge worldwide, and in Georgia, the burden of this healthcare-associated infection is a growing concern. This study investigates the role of gram-positive bacteria in nosocomial pneumonia cases, focusing on their prevalence, antimicrobial resistance patterns, and associated risk factors. A retrospective analysis of 484 clinical samples collected from 397 patients between May 2022 and September 2024 highlights the distribution of pathogens, with a particular emphasis on Staphylococcus aureus and Streptococcus pneumoniae. Among gram-positive pathogens, Staphylococcus aureus was the most prevalent, accounting for 103 cases (21.3%), followed by Streptococcus pneumoniae with 45 cases (9.3%). The study identifies alarming rates of antimicrobial resistance among gram-positive pathogens. Staphylococcus aureus isolates demonstrated universal penicillinase production (103/103, 100%) and high levels of mecA-mediated methicillin resistance (89/103, 86.4%) and erm-mediated macrolide resistance (74/103, 71.8%). Additionally, notable resistance was observed to tetracycline (93/103, 90.3%), aminoglycosides (31/103, 30.1%), and fluoroquinolones (41/103, 39.8%). Streptococcus pneumoniae isolates exhibited universal penicillinase production (45/45, 100%), with complete beta-lactam resistance found in 42 isolates (42/45, 93.3%), mediated through mutations in the pbp1a, pbp2x, and pbp2b genes. Furthermore, erm(B)-mediated macrolide resistance was observed in 37 isolates (37/45, 82.2%), tetM-mediated tetracycline resistance in 37 isolates (37/45, 82.2%), and fluoroquinolone resistance in 13 isolates (13/45, 28.9%). One isolate of each pathogen demonstrated vancomycin resistance, underscoring the emergence of multidrug-resistant (MDR) strains. The study underscores the need for stringent infection control measures and rational antibiotic stewardship to mitigate the impact of resistant gram-positive pathogens in Georgian healthcare settings. The findings also stress the importance of continuous surveillance to monitor resistance trends and guide empirical therapy. By exploring the resistance mechanisms and prevalence of gram-positive bacteria in nosocomial pneumonia, this research contributes to a deeper understanding of the local epidemiology and highlights actionable insights for improving patient outcomes.202539974234
1955160.9998Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. BACKGROUND & OBJECTIVES: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. METHODS: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. RESULTS: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. INTERPRETATION & CONCLUSIONS: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources.201931219088
2303170.9998Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593
2301180.9998Korean Nationwide Surveillance of Antimicrobial Resistance of bacteria in 1997. Antimicrobial-resistant bacteria are known to be prevalent in tertiary-care hospitals in Korea. Twenty hospitals participated to this surveillance to determine the nationwide prevalence of resistance bacteria in 1997. Seven per cent and 26% of Escherichia coli and Klebsiella pneumoniae were resistant to 3rd-generation cephalosporin. Increased resistance rates, 19% of Acinetobacter baumannii to ampicillin/sulbactam, and 17% of Pseudomonas aeruginoa to imipenem, were noted. The resistance rate to fluoroquinolone rose to 24% in E. coli, 56% in A. baumannii and 42% in P. aeruginosa. Mean resistance rates were similar in all hospital groups: about 17% of P. aeruginosa to imipenem, 50% of Haemophilus influenzae to ampicillin, 70% of Staphylococcus aureus to methicillin, and 70% of pneumococci to penicillin. In conclusion, nosocomial pathogens and problem resistant organisms are prevalent in smaller hospitals too, indicating nosocomial spread is a significant cause of the increasing prevalence of resistant bacteria in Korea.199810097685
2358190.9998Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Background: Biofilm formation in S. aureus may reduce the rate of penetration of antibiotics, thereby complicating treatment of infections caused by these bacteria. The aim of this study was to correlate biofilm-forming potentials, antimicrobial resistance, and genes in S. aureus isolates. Methods: A total of 64 milk samples were analysed, and 77 S. aureus were isolated. Results: Seventy (90.9%) isolates were biofilm producers. The ica biofilm-forming genes were detected among 75.3% of the isolates, with icaA being the most prevalent (49, 63.6%). The icaB gene was significantly (P = 0.027) higher in isolates with strong biofilm formation potentials. High resistance (60%-90%) of the isolates was observed against ceftriaxone, vancomycin, and penicillin, and 25 (32.5%) of S. aureus showed multidrug resistance (MDR) to at least three antibiotics. Five resistance genes, namely blaZ (29, 37.7%), vanC (29, 37.7%), tetK (24, 31.2%), tetL (21, 27.3%), and msrA/B (16, 20.8%) were detected. Most MDR phenotypes possessed at least one resistance gene alongside the biofilm genes. However, no distinct pattern was identified among the resistance and biofilm phenotypes. Conclusions: The high frequency of potentially pathogenic MDR S. aureus in milk samples intended for human consumption, demonstrates the public health relevance of this pathogen in the region.202032252278