Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
236101.0000Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. OBJECTIVE: This study aimed to compare the identification efficiency of metagenome next generation sequencing (mNGS) and traditional methods in detecting pathogens in patients with severe bacterial pneumonia (BP) and further analyze the drug resistance of common pathogens. METHODS: A total of 180 patients with severe BP who were admitted to our hospital from June 2017 to July 2020 were selected as the research objects. Alveolar lavage fluid from the patients were collected, and pathogens were detected by the mNGS technology and traditional etiological detection technology. Common pathogens detected by mNGS were tested for the drug sensitivity test. The difference between mNGS and traditional detection method in the identification of pathogenic bacteria in severe BP patients was compared, and the distribution characteristics and drug resistance of pathogenic bacteria were analyzed. RESULTS: The positive rate of mNGS detection was 92.22%, which was significantly higher than that of the traditional culture method (58.33%, P < 0.05). 347 strains of pathogenic bacteria were detected by mNGS, including 256 strains of Gram-negative bacteria (G(-)), 89 strains of Gram-positive bacteria (G(+)), and 2 strains of fungi. Among G(-) bacteria, Acinetobacter baumannii had higher resistance to piperacillin/tazobactam, ceftazidime, imipenem, levofloxacin, amikacin, ciprofloxacin, gentamicin, and the lowest resistance to tigecycline. The resistance of Klebsiella pneumoniae to piperacillin/tazobactam and ceftazidime was higher. Pseudomonas aeruginosa had low resistance to all the drugs. Escherichia coli had high drug resistance to most drugs, and the drug resistant rates to cefoperazone/sulbactam, piperacillin/tazobactam, ceftazidime, imipenem, and gentamicin were all more than 50.00%. G(+) bacteria had high resistance to penicillin, azithromycin, amoxicillin and levofloxacin, and amoxicillin and levofloxacin had high resistance, up to 100.00%. CONCLUSION: mNGS has high sensitivity for the identification of pathogenic bacteria in patients with BP. G(-) bacteria were the main pathogens of BP, but both G(-) and G(+) bacteria had high resistance to a variety of antibacterial drugs.202236262997
216610.9999Distribution and drug resistance of pathogenic bacteria in emergency patients. BACKGROUND: Antibiotic resistance has become a global threat for human health, calling for rational use of antibiotics. AIM: To analyze the distribution and drug resistance of the bacteria, providing the prerequisite for use of antibiotics in emergency patients. METHODS: A total of 2048 emergency patients from 2013 to 2017 were enrolled. Their clinical examination specimens were collected, followed by isolation of bacteria. The bacterial identification and drug susceptibility testing were carried out. RESULTS: A total of 3387 pathogens were isolated. The top six pathogens were Acinetobacter baumannii (660 strains), Staphylococcus aureus (436 strains), Klebsiella pneumoniae (347 strains), Pseudomonas aeruginosa (338 strains), Escherichia coli (237 strains), and Candida albicans (207 strains). The isolation rates of these pathogens decreased year by year except Klebsiella pneumoniae, which increased from 7.1% to 12.1%. Acinetobacter baumannii is a widely-resistant strain, with multiple resistances to imipenem, ciprofloxacin, minocycline and tigecycline. The Staphylococcus aureus had high resistance rates to levofloxacin, penicillin G, and tetracycline. But the susceptibility of it to vancomycin and tigecycline were 100%. Klebsiella pneumoniae had high resistance rates to imipenem, cefoperazone/sulbactam, amikacin, and ciprofloxacin, with the lowest resistance rate to tigecycline. The resistance rates of Pseudomonas aeruginosa to cefoperazone/sulbactam and imipenem were higher, with the resistance rate to amikacin below 10%. Besides, Escherichia coli had high resistance rates to ciprofloxacin and cefoperazone/sulbactam and low resistance rates to imipenem, amikacin, and tigecycline. CONCLUSION: The pathogenic bacteria isolated from the emergency patients were mainly Acinetobacter baumannii, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The detection rates of drug-resistant bacteria were high, with different bacteria having multiple drug resistances to commonly used antimicrobial agents, guiding the rational use of drugs and reducing the production of multidrug-resistant bacteria.201931667167
235520.9998Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level.201224669633
236330.9998Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected.202337840716
236240.9998Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou. AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.202438638249
230950.9998Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.202439139624
230860.9998Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted.202337307126
235670.9998Occurrence of Multiple-Drug Resistance Bacteria and Their Antimicrobial Resistance Patterns in Burn Infections from Southwest of Iran. Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.202234236077
231880.9998Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected.202032944333
231690.9998Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
2311100.9998Serious antimicrobial resistance status of pathogens causing hospital-acquired lower respiratory tract infections in North China. Antimicrobial resistance patterns of pathogens causing hospital-acquired lower respiratory tract infections (LRTIs) in Shandong Province, China were investigated using data collected from January 2002 to December 2006. A total of 10 337 isolates were characterized in sputum samples from 39 920 LRTI patients: 68.72% were Gram-negative bacteria, 20.65% were Gram-positive bacteria, and 10.62% were fungi. Organisms most frequently isolated were: Pseudomonas aeruginosa (16.88%), Klebsiella pneumoniae (10.80%), Escherichia coli (10.71%), fungi (10.62%), Staphylococcus aureus (9.68%) and Acinetobacter baumannii (9.03%). Imipenem was the most effective antibiotic against Gram-negative bacteria. Most Gram-positive bacteria were susceptible to vancomycin. Susceptibility to cephalosporins was not optimal and resistance to fluoroquinolones was high. Resistance of Gram-negative bacteria showed a rapid increase over the study period, while resistance of Gram-positive bacteria remained relatively stable. The emergence of resistance to commonly prescribed antimicrobial agents used against LRTI pathogens has compounded the problem of using empirical therapy and created selective pressure on physicians to use certain antibiotics.200919589276
1701110.9998Type VI secretion system (T6SS) in Klebsiella pneumoniae, relation to antibiotic resistance and biofilm formation. BACKGROUND AND OBJECTIVES: The type VI secretion system (T6SS) was identified as a novel virulence factor in many Gram-negative bacteria. This study aimed to investigate the frequency of the T6SS genes in Klebsiella pneumoniae-causing different nosocomial infections, and to study the association between T6SS, antibiotic resistance, and biofilm formation in the isolated bacteria. MATERIALS AND METHODS: A total of fifty-six non-repetitive K. pneumoniae isolates were collected from different inpatients admitted at Sohag University Hospital from September 2022 to March 2023. Samples were cultured, colonies were identified, and antimicrobial sensitivity was done by VITEK® 2 Compact. Biofilm formation was checked using Congo red agar method. T6SS genes, and capsular serotypes were detected by PCR. RESULTS: Fifty-six K. pneumoniae isolates were obtained in culture. 38 isolates (67.86%) produced biofilm and 44 (78.57%) were positive for T6SS in PCR. There was a significant association between the presence of T6SS and resistance to the following antibiotics: meropenem, ciprofloxacin, and levofloxacin. All biofilm-forming bacteria had T6SS, with significant differences towards T6SS -positive bacteria. There was no significant association between T6SS, and the presence of certain capsular types. CONCLUSION: The T6SS-positive K. pneumoniae has greater antibiotic resistance, and biofilm-forming ability which is considered a potential pathogenicity of this emerging gene cluster.202337941882
2317120.9998Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. BACKGROUND: Acinetobacter baumannii (A. baumannii) is one of the most important bacteria causing nosocomial infections worldwide. Over the past few years, several strains of A. baumannii have shown antibiotic resistance, which may be due to the activity of efflux pumps. This study was aimed to detect AdeFG efflux pump genes and their contribution to antibiotic resistance in A. baumannii clinical isolates. METHODS: A total of 200 A. baumannii clinical isolates were collected from clinical specimens of ulcers, pus, sputum, and blood. All isolates were identified using standard biochemical tests. After identifying and cleaving the genome by boiling, PCR was performed on samples using specific primers. The antimicrobial susceptibility patterns were determined by disk diffusion, with and without CCCP efflux pump inhibitor were determined according to CLSI guidelines. RESULTS: We identified 60 clinical isolates of A. baumannii using biochemical differential tests. Identification of all A. baumannii isolates was confirmed by blaOXA-51-like PCR. According to the results of our study, 98.37% of A. baumannii isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. PCR results indicated that all 60 A. baumannii isolates contained the AdeF and 76.66% contained AdeG. CONCLUSION: the results of this study demonstrated that most of the A. baumannii isolates contained AdeF and AdeG efflux pump genes, and more than 98% of the isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. This reflected the significant contribution of efflux pumps to the development of resistance to these antibiotics.202032582800
2209130.9998Concordance Between Antibiotic Resistance Genes and Susceptibility in Symptomatic Urinary Tract Infections. PURPOSE: Studies have shown that multiple genes influence antibiotic susceptibility, but the relationship between genotypic and phenotypic antibiotic susceptibility is unclear. We sought to analyze the concordance between the presence of antibiotic resistance (ABR) genes and antibiotic susceptibility results in urine samples collected from patients with symptomatic urinary tract infection (UTI). PATIENTS AND METHODS: Urine samples were collected from patients presenting to 37 geographically disparate urology clinics across the United States from July 2018 to February 2019. Multiplex polymerase chain reaction was used to detect 27 ABR genes. In samples containing at least one culturable organism at a concentration of ≥ 10(4) cells per mL, pooled antibiotic susceptibility testing (P-AST), which involves simultaneous growing all detected bacteria together in the presence of antibiotic and then measure susceptibility, was performed against 14 antibiotics. The concordance rate between the ABR genes and the P-AST results was generated for the overall group. The concordance rates for each antibiotic between monomicrobial and polymicrobial infection were compared using chi-square test. RESULTS: Results from ABR gene detection and P-AST of urine samples from 1155 patients were included in the concordance analysis. Overall, there was a 60% concordance between the presence or absence of ABR genes and corresponding antimicrobial susceptibility with a range of 49-78% across antibiotic classes. Vancomycin, meropenem, and piperacillin/tazobactam showed significantly lower concordance rates in polymicrobial infections than in monomicrobial infections. CONCLUSION: Given the 40% discordance rate, the detection of ABR genes alone may not provide reliable data to make informed clinical decisions in UTI management. However, when used in conjunction with susceptibility testing, ABR gene data can offer valuable clinical information for antibiotic stewardship.202134447256
2165140.9998Distribution and analysis of the resistance profiles of bacteria isolated from blood cultures in the intensive care unit. PURPOSE: To investigate the distribution characteristics and drug resistance of pathogenic bacteria in bloodstream infections, providing a basis for rational clinical treatment. PATIENTS AND METHODS: Retrospective analysis of 1,282 pathogenic strains isolated from blood cultures in the intensive care unit (ICU) of the Second Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to December 31, 2022. RESULTS: Gram-positive bacteria (52.0%) slightly predominated over gram-negative bacteria (48.0%). The top three gram-positive bacteria were Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (7.4%), and Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin or linezolid were found. Among the Enterococci, Enterococcus faecium had a high resistance rate to penicillin, ampicillin, and erythromycin. Two strains of Enterococcus faecalis were resistant to linezolid, but none to vancomycin. The top three gram-negative bacteria were Escherichia coli (14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%). The resistance rate of Escherichia coli to carbapenems increased from 0.0 to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance to various carbapenems. CONCLUSION: The isolation rate of gram-positive bacteria in patients with bloodstream infection in the ICU of the Second Affiliated Hospital of Xi'an Jiaotong University was slightly higher than that of gram-negative bacteria. The alarming carbapenem resistance among gram-negative pathogens and emerging linezolid resistance in Enterococci demand urgent clinical interventions, including enhanced surveillance, antimicrobial stewardship, and novel therapeutic strategies.202540727562
1954150.9998Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area.202133378222
871160.9998Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC.202337894090
2152170.9998Immunological and molecular detection of biofilm formation and antibiotic resistance genes of Pseudomonas aeruginosa isolated from urinary tract. BACKGROUND AND OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common causes of hospital-acquired infections. It is associated with high morbidity and healthcare costs, especially when appropriate antibiotic treatment is delayed. Antibiotic selection for patients with P. aeruginosa infections is challenging due to the bacteria's inherent resistance to many commercially available antibiotics. This study investigated antibiotic-resistance genes in isolated bacteria, which play a key role in disease pathogenesis. MATERIALS AND METHODS: 100 samples out of the 140 samples collected from urinary tract infections (UTIs) cases between December 15(th), 2022, and April 15(th), 2023, were included in the study. Identification of bacterial isolates was based on colony morphology, microscopic examination, biochemical tests, and the Vitek-2 system. Antibiotic resistance genes; Aph(3)-llla, ParC, Tet/tet(M), and aac(6´)-Ib-cr were tested by polymerase chain reaction (PCR). RESULTS: The obtained results were based on bacterial identifications of 81 clinical samples. Only 26 (32%) of these isolates were P. aeruginosa, 21 (26%) were Escherichia coli, and 18 (22.2%) were other bacteria. These isolates were used to detect four genes including tet(M), Aph(3)-llla, Par-c, and aac(6´)-Ib-cr. Four types of primers were used for PCR detection. The results showed that 11/14 (78.57%) carried the tet(M) gene, 10/14 (71.42%) carried the Aph(3)-llla gene, 14/14 (100%) carried the Par-c gene, and 10/14 (71.42%) of the isolates carried the aac(6´)-Ib-cr gene. The biofilm formation examining the esp gene, showed that 9 (64.28) isolates carried this gene. CONCLUSION: The inability of antibiotics to penetrate biofilms is an important factor contributing to the antibiotic tolerance of bacterial biofilms.202540612720
2167180.9998In and Outpatients Bacteria Antibiotic Resistances in Positive Urine Cultures from a Tertiary Care Hospital in the Western Part of Romania-A Cross-Sectional Study. BACKGROUND/OBJECTIVES: Urinary tract infections (UTI) represent a global problem with implications for mortality and morbidity. Published data present different bacterial incidences and different antibiotic resistance. The objective of our study is to evaluate the bacteria distribution in positive urine cultures in a mixed adult population and evaluate the differences in antibiotic resistance in in- and outpatients. METHODS: We analyzed 1186 positive urine cultures in 2021 from the Emergency County Hospital "Pius Brinzeu" from Timisoara, Romania. We evaluated the bacteria distribution and antibiotic resistance stratified by in and outpatients from a mixed adult population. RESULTS: The median age was 67, with 65.7% females and 28.5% were outpatients. In inpatients, the most commonly identified bacteria was E. coli, followed by Enterococcus spp., and Klebsiella spp., while in outpatients, E. coli, Enterococcus spp., and Klebsiella spp. were the leading ones. Overall, E. coli presented the highest resistance rate to ampicillin, Enterococcus spp. to ciprofloxacin, Klebsiella spp. to cephalosporins, and Proteus spp. to trimethoprim/sulfamethoxazole. Inpatients presented higher resistance rates for E. coli to ceftazidime, cefuroxime, gentamycin, ciprofloxacin, and trimethoprim/sulfamethoxazole, Klebsiella spp. to most cephalosporin, gentamycin and levofloxacin, Proteus spp. to gentamycin and Enterococcus spp. to gentamycin and quinolones when compared to outpatients. The highest incidence of extensively drug-resistant (XDR) bacteria was among Acinetobacter baumanii, followed by Pseudomonas spp., and Serratia spp. CONCLUSIONS: susceptibility. Bacteria identified in inpatients' positive urine cultures present higher resistance rates to several antibiotics. Our study could be a foundation for a local or even national guideline for the antibiotic treatment of urinary tract infections.202540136614
2310190.9998Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Patients with cancer have a higher risk of severe bacterial infections. This study aims to determine the frequency, susceptibility profiles, and resistance genes of bacterial species involved in bacteremia, as well as risk factors associated with mortality in cancer patients in Colombia. In this prospective multicenter cohort study of adult patients with cancer and bacteremia, susceptibility testing was performed and selected resistance genes were identified. A multivariate regression analysis was carried out for the identification of risk factors for mortality. In 195 patients, 206 microorganisms were isolated. Gram-negative bacteria were more frequently found, in 142 cases (68.9%): 67 Escherichia coli (32.5%), 36 Klebsiella pneumoniae (17.4%), and 21 Pseudomonas aeruginosa (10.1%), and 18 other Gram-negative isolates (8.7%). Staphylococcus aureus represented 12.4% (n = 25). Among the isolates, resistance to at least one antibiotic was identified in 63% of them. Genes coding for extended-spectrum beta-lactamases and carbapenemases, blaCTX-M and blaKPC, respectively, were commonly found. Mortality rate was 25.6% and it was lower in those with adequate empirical antibiotic treatment (22.0% vs. 45.2%, OR: 0.26, 95% CI: 0.1-0.63, in the multivariate model). In Colombia, in patients with cancer and bacteremia, bacteria have a high resistance profile to beta-lactams, with a high incidence of extended-spectrum beta-lactamases and carbapenemases. Adequate empirical treatment diminishes mortality, and empirical selection of treatment in this environment of high resistance is of key importance.202336838324