# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2360 | 0 | 1.0000 | Evaluating the antibiotic resistance and frequency of adhesion markers among Escherichia coli isolated from type 2 diabetes patients with urinary tract infection and its association with common polymorphism of mannose-binding lectin gene. The present paper aims to determine the frequency and antibiotic resistance patterns of pathogenic bacteria, the virulence factor profile of Escherichia coli and mannose-binding lectin (MBL) gene polymorphism in individuals with diabetes mellitus (DM) and urinary tract infection (UTI). The population under study was 130 individuals with type 2 diabetes mellitus (T2DM) and UTI. The patients' clinical characteristics and urine and blood samples (5 mL) were collected. Antibiotic resistance was determined using a disc diffusion method, and the results were interpreted according to CLSI. The presence of virulence genes was detected by multiplex PCR. To detect the MBL gene polymorphism, PCR and restriction fragment length polymorphism methods were applied. The predominant Gram-negative and Gram-positive bacteria included E. coli and Streptococcus spp.viridans group, respectively. Women were more susceptible to the incidence of UTI than men. The E. coli isolates showed a high level of resistance to amoxicillin-clavulanic acid (87.35%), and nitrofurantoin and ceftizoxime were the most effective antimicrobial agents for E. coli. Cefotaxime and ceftizoxime were the most effective antimicrobial agents for Enterobacter spp., norfloxacin and ciprofloxacin were the most effective antimicrobial agents for Staphylococcus epidermidis and Staphylococcus saprophyticus. papGII (52.87%) and papEF (1.14%) had the highest and lowest frequency among examined genes in E. coli isolates, respectively. The GG genotype had the highest frequency among patients with T2DM and UTI. Results showed that the detection of E. coli in individuals with an AA genotype, codon 54 of the MBL gene, can play an important role in the molecular diagnosis and timely treatment of bacterial infections in individuals with diabetes. | 2020 | 33364032 |
| 2333 | 1 | 0.9998 | Prevalence of USP and hlyA Genes and Association with Drug Resistance in Uropathogenic Escherichia coli Isolated from Patients in a Tertiary Hospital from Southeast China. E. coli was cultured from the urine of patients from the tertiary hospital located in Southeast China from 2017 to 2019. The species were identified, drug sensitivity test was performed, and the presence of the virulence genes USP and hlyA was determined. A total of 483 strains of E. coli were isolated, including 132 from patients with urinary tract infection (UTI). The resistance to ciprofloxacin was more common in non-UTI patients, while resistance to gentamycin was significantly higher in the UTI group. In the UTI group, the proportions of isolated bacteria with the virulence USP (40.15%) and hlyA (8.33%) genes were significantly higher than in the non-UTI group (19.60 and 2.56%, respectively). The rate of resistance of E. coli toward levofloxacin in the USP(+) group was significantly (p<0.05) higher than in the USP- group. Thus, we revealed the differences in the rate of drug resistance and prevalence of USP and hlyA between the UTI and non-UTI groups. Furthermore, the presence of the USP gene was found to be associated with greater resistance to levofloxacin. | 2022 | 36437317 |
| 2355 | 2 | 0.9998 | Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level. | 2012 | 24669633 |
| 2318 | 3 | 0.9998 | Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected. | 2020 | 32944333 |
| 2335 | 4 | 0.9998 | Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang. | 2023 | 36977209 |
| 2356 | 5 | 0.9998 | Occurrence of Multiple-Drug Resistance Bacteria and Their Antimicrobial Resistance Patterns in Burn Infections from Southwest of Iran. Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy. | 2022 | 34236077 |
| 2146 | 6 | 0.9998 | Study of aminoglycoside resistance genes in enterococcus and salmonella strains isolated from ilam and milad hospitals, iran. BACKGROUND: Aminoglycosides are a group of antibiotics that have been widely used in the treatment of life-threatening infections of Gram-negative bacteria. OBJECTIVES: This study aimed to evaluate the frequency of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from clinical samples by PCR. MATERIALS AND METHODS: In this study, 140 and 79 isolates of Enterococcus and Salmonella were collected, respectively. After phenotypic biochemical confirmation, 117 and 77 isolates were identified as Enterococcus and Salmonella, respectively. After the biochemical identification of the isolates, antibiotic susceptibility for screening of resistance was done using the Kirby-Bauer method for gentamicin, amikacin, kanamycin, tobramycin and netilmycin. DNA was extracted from resistant strains and the presence of acc (3)-Ia, aac (3')-Ib, acc (6)-IIa ,16SrRNA methylase genes (armA and rat) was detected by PCR amplification using special primers and positive controls. RESULTS: Enterococcus isolates have the highest prevalence of resistance to both kanamycin and amikacin (68.4%), and Salmonella isolates have the highest prevalence of resistance against kanamycin (6.9%). Ninety-three and 26 isolates of Enterococcus and Salmonella at least were resistant against one of the aminoglycosides, respectively. Moreover, 72.04%, 66.7%, and 36.6% of the resistant strains of Enterococcus had the aac (3')-Ia, aac (3')-IIa, and acc (6')-Ib genes, respectively. None of the Salmonella isolates have the studied aminoglycoside genes. CONCLUSIONS: Our results indicate that acetylation genes have an important role in aminoglycoside resistance of the Enterococcus isolates from clinical samples. Moreover, Salmonella strains indicate very low level of aminoglycoside resistance, and aminoglycoside resistance genes were not found in Salmonella isolates. These results indicate that other resistance mechanisms, including efflux pumps have an important role in aminoglycoside resistance of Salmonella. | 2015 | 26034551 |
| 2151 | 7 | 0.9998 | Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence. | 2024 | 39011020 |
| 2362 | 8 | 0.9998 | Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou. AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections. | 2024 | 38638249 |
| 2359 | 9 | 0.9998 | Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds. Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton-Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood. | 2021 | 34357963 |
| 2363 | 10 | 0.9998 | Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected. | 2023 | 37840716 |
| 2325 | 11 | 0.9998 | Association of Virulence Genes with Antibiotic Resistance in Pakistani Uropathogenic E. coli Isolates. BACKGROUND: Escherichia coli various strains can cause alarmingly serious infections. Countries like Pakistan harbour the class of bacteria with one of the highest rates of resistance, but very little has been done to explore their genetic pool. OBJECTIVES: This study was designed to find out the frequency of virulence genes of Uropathogenic E. coli and their association with antibiotic resistance along with the evolutionary adaptation of the selected gene through the phylogenetic tree. METHODS: Isolates from 120 urinary tract infected patients were collected. Antibiotic sensitivity was detected by the disk diffusion method and DNA extraction was done by the boiling lysis method followed by PCR-based detection of virulence genes. The final results were analysed using the chi-square test. RESULTS: The isolates were found to be least susceptible to nalidixic acid, followed by ampicillin, cotrimoxazole, cefotaxime, ciprofloxacin, aztreonam, amoxicillin, gentamycin, nitrofurantoin and imipenem. The iucC was the most common virulence gene among the resistant isolates. About 86% of the collected samples were found to be multi-drug resistant. Statistical analysis revealed a significant association between the iucC gene and resistance to ampicillin (P=0.03) and amoxicillin (P=0.04), and also between fimH and resistance to aztreonam (P=0.03). CONCLUSION: This study unravels the uncharted virulence genes of UPEC in our community for the very first time. We report a high frequency of the iucC and fimH virulence genes. This, along with their positive association with resistance to beta-lactam antibiotics in the studied community, indicates their important role in the development of complicated UTIs. | 2020 | 32238138 |
| 2349 | 12 | 0.9997 | DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene. | 2024 | 39724880 |
| 2137 | 13 | 0.9997 | High prevalence of antibiotic resistance and biofilm formation in Salmonella Gallinarum. BACKGROUND AND OBJECTIVES: Antibiotic resistance is an indicator of the passively acquired and circulating resistance genes. Salmonella Gallinarum significantly affects the poultry food industry. The present study is the first study of the S. Gallinarum biofilm in Iran, which is focused on the characterization of the S. Gallinarum serovars and their acquired antibiotic resistance genes circulating in poultry fields in central and northwestern Iran. MATERIALS AND METHODS: Sixty isolates of S. Gallinarum serovar were collected from feces of live poultry. The bacteria were isolated using biochemical tests and confirmed by Multiplex PCR. Biofilm formation ability and the antibacterial resistance were evaluated using both phenotypic and genotypic methods. The data were analyzed using SPSS software. RESULTS: According to Multiplex PCR for ratA, SteB, and rhs genes, all 60 S. Gallinarum serovars were Gallinarum biovars. In our study, the antibiotic resistance rate among isolated strains was as follows: Penicillin (100%), nitrofurantoin (80%), nalidixic acid (45%), cefoxitin (35%), neomycin sulfate (30%), chloramphenicol (20%), and ciprofloxacin (5%). All isolates were susceptible to imipenem, ertapenem, ceftriaxone, ceftazidime, and ceftazidime+clavulanic acid. All sixty isolates did not express the resistance genes IMP, VIM, NDM, DHA, bla(OXA48), and qnrA. On the other hand, they expressed GES (85%), qnrB (75%), Fox M (70%), SHV (60%), CITM (20%), KPC (15%), FOX (10%), MOXM (5%), and qnrS (5%). All S. Gallinarum isolates formed biofilm and expressed sdiA gene. CONCLUSION: Considering that the presence of this bacteria is equal to the death penalty to the herd, the distribution of resistance genes could be a critical alarm for pathogen monitoring programs in the region. This study showed a positive correlation between biofilm formation and 50% of tested resistance genes. Also, it was found that the most common circulating S. gallinarum biovars are multidrug-resistant. | 2023 | 37941876 |
| 2316 | 14 | 0.9997 | Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics. | 2025 | 41036356 |
| 2152 | 15 | 0.9997 | Immunological and molecular detection of biofilm formation and antibiotic resistance genes of Pseudomonas aeruginosa isolated from urinary tract. BACKGROUND AND OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common causes of hospital-acquired infections. It is associated with high morbidity and healthcare costs, especially when appropriate antibiotic treatment is delayed. Antibiotic selection for patients with P. aeruginosa infections is challenging due to the bacteria's inherent resistance to many commercially available antibiotics. This study investigated antibiotic-resistance genes in isolated bacteria, which play a key role in disease pathogenesis. MATERIALS AND METHODS: 100 samples out of the 140 samples collected from urinary tract infections (UTIs) cases between December 15(th), 2022, and April 15(th), 2023, were included in the study. Identification of bacterial isolates was based on colony morphology, microscopic examination, biochemical tests, and the Vitek-2 system. Antibiotic resistance genes; Aph(3)-llla, ParC, Tet/tet(M), and aac(6´)-Ib-cr were tested by polymerase chain reaction (PCR). RESULTS: The obtained results were based on bacterial identifications of 81 clinical samples. Only 26 (32%) of these isolates were P. aeruginosa, 21 (26%) were Escherichia coli, and 18 (22.2%) were other bacteria. These isolates were used to detect four genes including tet(M), Aph(3)-llla, Par-c, and aac(6´)-Ib-cr. Four types of primers were used for PCR detection. The results showed that 11/14 (78.57%) carried the tet(M) gene, 10/14 (71.42%) carried the Aph(3)-llla gene, 14/14 (100%) carried the Par-c gene, and 10/14 (71.42%) of the isolates carried the aac(6´)-Ib-cr gene. The biofilm formation examining the esp gene, showed that 9 (64.28) isolates carried this gene. CONCLUSION: The inability of antibiotics to penetrate biofilms is an important factor contributing to the antibiotic tolerance of bacterial biofilms. | 2025 | 40612720 |
| 2326 | 16 | 0.9997 | Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Resistance to antimicrobial compounds in E. coli strains is increasing. Integrons are mobile genetic elements that lead to the spread and transfer of antibiotic resistance genes in bacteria. The aim of the present study was to determine the frequency of class 1 and 2 integrons as well as the antimicrobial resistance in E.coli strains isolated from urinary tract infections (UTIs). A total of 100 clinical isolates of uropathogenic E. coli (UPEC) were collected from patients having UTIs. These strains were identified using biochemical tests. The antibiotic susceptibility patterns of the isolated bacteria were determined in accordance with the standard method recommended by the clinical and laboratory standards institute (CLSI). The presence of class 1 and 2 integrons was determined by PCR method. The most frequent antibiotic resistance was observed to ampicillin (72%), co-trimoxazole (66%), and nalidixic acid (62%). The highest sensitivity was seen to amikacine (11%) and gentamicin (20%). The multi-drug resistance (MDR) was observed in 80% of E. coli isolates. 70% and 3% of E. coli isolate possessed class 1 and 2 integrons, respectively. Our data suggest that the antimicrobial resistance to some antibiotics as well as the frequency of class 1 and 2 integrons is very high in E. coli strains. Moreover, class 1 integrons are correlated with resistance to ampicillin, gentamicin, ciprofloxacin, co-trimoxazole, and nalidixic acid. Therefore, it is very important to monitor integron-induced drug resistance, especially class 1 integron, in order to control the urinary tract infections causing by MDR E.coli strains. | 2020 | 33680029 |
| 2147 | 17 | 0.9997 | Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India. This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. | 2016 | 27403451 |
| 2361 | 18 | 0.9997 | Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. OBJECTIVE: This study aimed to compare the identification efficiency of metagenome next generation sequencing (mNGS) and traditional methods in detecting pathogens in patients with severe bacterial pneumonia (BP) and further analyze the drug resistance of common pathogens. METHODS: A total of 180 patients with severe BP who were admitted to our hospital from June 2017 to July 2020 were selected as the research objects. Alveolar lavage fluid from the patients were collected, and pathogens were detected by the mNGS technology and traditional etiological detection technology. Common pathogens detected by mNGS were tested for the drug sensitivity test. The difference between mNGS and traditional detection method in the identification of pathogenic bacteria in severe BP patients was compared, and the distribution characteristics and drug resistance of pathogenic bacteria were analyzed. RESULTS: The positive rate of mNGS detection was 92.22%, which was significantly higher than that of the traditional culture method (58.33%, P < 0.05). 347 strains of pathogenic bacteria were detected by mNGS, including 256 strains of Gram-negative bacteria (G(-)), 89 strains of Gram-positive bacteria (G(+)), and 2 strains of fungi. Among G(-) bacteria, Acinetobacter baumannii had higher resistance to piperacillin/tazobactam, ceftazidime, imipenem, levofloxacin, amikacin, ciprofloxacin, gentamicin, and the lowest resistance to tigecycline. The resistance of Klebsiella pneumoniae to piperacillin/tazobactam and ceftazidime was higher. Pseudomonas aeruginosa had low resistance to all the drugs. Escherichia coli had high drug resistance to most drugs, and the drug resistant rates to cefoperazone/sulbactam, piperacillin/tazobactam, ceftazidime, imipenem, and gentamicin were all more than 50.00%. G(+) bacteria had high resistance to penicillin, azithromycin, amoxicillin and levofloxacin, and amoxicillin and levofloxacin had high resistance, up to 100.00%. CONCLUSION: mNGS has high sensitivity for the identification of pathogenic bacteria in patients with BP. G(-) bacteria were the main pathogens of BP, but both G(-) and G(+) bacteria had high resistance to a variety of antibacterial drugs. | 2022 | 36262997 |
| 2212 | 19 | 0.9997 | Distribution and drug resistance of pathogens causing urinary tract infection in patients with urinary calculi. OBJECTIVE: This study set out to clarify the distribution and drug resistance of pathogens causing urinary tract infection (UTI) in patients with urinary calculi. METHODS: Pathogens were isolated from urine samples of patients with urinary calculi also complicated with UTIs, during the period from 2015 to 2019, and the samples were cultured for drug sensitivity testing to study the drug resistance of pathogens. The results were analyzed by SPSS 22.0 software. RESULTS: Gram-negative bacteria were the main pathogens found in patients with urinary calculi complicated with UTI (84.52%). Escherichia coli, Enterococcus faecalis and Monilia albicans were the most common Gram-negative bacteria (48.84%), Gram-positive bacteria (34.78%) and fungus (29.41%), respectively. The UTI rates were higher in female patients than in male patients, and were higher in patients ≥ 60 years old compared with those < 60 years old. Escherichia coli and Klebsiella pneumoniae had the highest resistance to ampicillin and the lowest resistance to imipenem. Enterococcus faecalis Enterococcus Faecium had the highest resistance to penicillin and ampicillin, but the lowest resistance to vancomycin and linezolid. CONCLUSION: The present study found that the pathogenic bacteria found in patients with urinary calculi complicated with UTI are mainly Gram-negative bacteria; and Escherichia coli is the main pathogenic bacteria causing the infection. Gender and age may be risk factors for urinary calculi complicated with UTI. Antibiotics should be selected reasonably according to the drug resistance pattern of pathogenic bacteria in clinical anti-infection management. | 2021 | 34650726 |