# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2357 | 0 | 1.0000 | Prevalence of Methicillin and β-Lactamase Resistant Pathogens Associated with Oral and Periodontal Disease of Children in Mymensingh, Bangladesh. Oral and periodontal diseases (OPD) is considered one of the main problems of dentistry worldwide. This study aimed to estimate the prevalence of oral and periodontal pathogenic bacteria along with their antimicrobial resistance pattern in 131 children patients aged between 4-10 years who attended in Mymensingh Medical College Hospital during October 2019 to March 2020. OPD pathogens were identified through isolation, cultural and biochemical properties, and nucleic acid detection. The isolates were subjected to antimicrobial susceptibility to 12 antibiotics commonly used in dentistry. In addition, the isolates were analyzed molecularly for the presence of six virulence and three antibacterial resistance genes. Five pathogens were identified, of which Staphylococcus aureus (S. aureus) (49%) and S. salivarius (46%) were noticed frequently; other bacteria included S. mutans (16.8%), S. sobrinus (0.8%) and L. fermentum (13.7%). The virulence genes-clumping factor A (clfA) was detected in 62.5% isolates of S. aureus, and gelatinase enzyme E (gelE) gene was detected in 5% isolates of S. salivarius, while other virulence genes were not detected. All the tested isolates were multidrug-resistant. The overall prevalence of MDR S. aureus, Streptococcus spp. and L. fermentum was 92.2%, 95.1% and 100%, respectively. It was observed that a high proportion of isolates were found resistant to 5-8 antibiotics. A majority of S. aureus, Streptococcus spp., and L. fermentum isolates tested positive for the β-lactamase resistance genes blaTEM and cfxA, as well as the methicillin resistance gene mecA. Phylogenetically, the resistance genes showed variable genetic character among Bangladeshi bacterial pathogens. In conclusion, S. aureus and S. salivarius were major OPD pathogens in patients attended in Mymensingh Medical College Hospital of Bangladesh, and most were Beta-lactam and methicillin resistant. | 2022 | 36015011 |
| 2358 | 1 | 0.9999 | Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Background: Biofilm formation in S. aureus may reduce the rate of penetration of antibiotics, thereby complicating treatment of infections caused by these bacteria. The aim of this study was to correlate biofilm-forming potentials, antimicrobial resistance, and genes in S. aureus isolates. Methods: A total of 64 milk samples were analysed, and 77 S. aureus were isolated. Results: Seventy (90.9%) isolates were biofilm producers. The ica biofilm-forming genes were detected among 75.3% of the isolates, with icaA being the most prevalent (49, 63.6%). The icaB gene was significantly (P = 0.027) higher in isolates with strong biofilm formation potentials. High resistance (60%-90%) of the isolates was observed against ceftriaxone, vancomycin, and penicillin, and 25 (32.5%) of S. aureus showed multidrug resistance (MDR) to at least three antibiotics. Five resistance genes, namely blaZ (29, 37.7%), vanC (29, 37.7%), tetK (24, 31.2%), tetL (21, 27.3%), and msrA/B (16, 20.8%) were detected. Most MDR phenotypes possessed at least one resistance gene alongside the biofilm genes. However, no distinct pattern was identified among the resistance and biofilm phenotypes. Conclusions: The high frequency of potentially pathogenic MDR S. aureus in milk samples intended for human consumption, demonstrates the public health relevance of this pathogen in the region. | 2020 | 32252278 |
| 2377 | 2 | 0.9998 | Multidrug-resistant and enterotoxigenic methicillin-resistant Staphylococcus aureus isolated from raw milk of cows at small-scale production units. OBJECTIVE: Staphylococcus aureus (S. aureus) has evolved as one of the most significant bacteria causing food poisoning outbreaks worldwide. This study was carried out to investigate the prevalence, antibiotic sensitivity, virulence, and enterotoxin production of S. aureus in raw milk of cow from small-scale production units and house-raised animals in Damietta governorate, Egypt. MATERIAL AND METHODS: The samples were examined bacteriologically, and antimicrobial sensitivity testing was carried out. Moreover, isolates were characterized by the molecular detection of antimicrobial resistance, virulence, and enterotoxin genes. RESULTS: Out of 300 milk samples examined, S. aureus was isolated from 50 samples (16.7%). Antibiotic sensitivity testing revealed that isolates were resistant to β-lactams (32%), tetracycline (16%), and norfloxacin (16%); however, they showed considerable sensitivity to ceftaroline and amikacin (72%). Multidrug-resistance (MDR) has been observed in eight isolates (16%), with a MDR index (0.5) in all of them. Of the total S. aureus isolates obtained, methicillin-resistant S. aureus (MRSA) has been confirmed molecularly in 16/50 (32%) and was found to carry mecA and coa genes, while virulence genes; hlg (11/16, 68.75%) and tsst (6/16, 37.5%) were amplified at a lower percentage, and they showed a significant moderate negative correlation (r = -0.59, p-value > 0.05). Antibiotic resistance genes have been detected in resistant isolates relevant to their phenotypic resistance: blaZ (100%), tetK (50%), and norA (50%). Fifty percent of MRSA isolates carried the seb enterotoxin gene. CONCLUSION: High detection rate of MRSA and MDR isolates from milk necessitates the prompt implementation of efficient antimicrobial stewardship guidelines, especially at neglected small-scale production units. | 2022 | 35445112 |
| 2359 | 3 | 0.9998 | Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds. Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton-Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood. | 2021 | 34357963 |
| 2354 | 4 | 0.9998 | Resistance profiles of Staphylococcus aureus isolates against frequently used antibiotics at private sector laboratories in Jordan. BACKGROUND AND OBJECTIVES: Staphylococcus aureus (S. aureus) is one of the most important pathogens, responsible for a range of infections. This study aimed to assess resistance patterns in S. aureus isolates obtained from certain private-sector laboratories against commonly used antimicrobial agents. MATERIALS AND METHODS: The process involved collecting various samples from several private laboratories and then identifying S. aureus isolates using biochemical characterization. The antibiotic susceptibility of these isolates was determined by disc diffusion method. Furthermore, Rt-PCR was employed to identify two genes namely the methicillin/oxacillin resistance genes (mecA), and (SCCmec). RESULTS: The findings of the current study exhibited that females constituted a larger proportion of the participants (59.1%) compared to males (40.9%), with a mean participant age of 40.82 years. Gram-positive bacteria were more prevalent (71.3%) than Gram-negative bacteria (18.3%), with S. aureus being the most frequent isolate (60.9%). Urine samples represented the highest collected sample type (47.8%). Out of the 115 bacterial isolates, 85.2% exhibited multidrug resistance to antibiotics such as cefazolin, gentamicin, vancomycin, and ceftazidime. Clindamycin was the most effective antibiotic, with a sensitivity rate of 62.9%, followed by teicoplanin and meropenem, each with a sensitivity rate of 52.9%. Methicillin-resistant Staphylococcus aureus (MRSA) strains were susceptabile to vancomycin and teicoplanin. The methicillin/oxacillin resistant isolates showed significant association with mecA and SCCA genes. CONCLUSION: This study highlighted the multi-drug resistance in S. aureus isolates, stressing the need for stringent antibiotic stewardship, continuous surveillance, and further research into alternative treatments, including novel antibiotics and combination therapy, to combat resistant strains. | 2025 | 40337673 |
| 2678 | 5 | 0.9998 | Phenotypic and molecular characterization of multidrug-resistant mastitis causing pathogens in dairy cattle. This study focused on isolating antibiotic-resistant mastitogens from cow milk; 57% of 100 samples tested positive by California mastitis test. Bacterial species from each milk sample were isolated and identified using Vitek® 2 automated system. Out of the 167 bacterial strains isolated, 14 were multidrug-resistant (MDR) and were further identified as belonging to Staphylococcus spp. Enterobacter spp. Morganella spp. and Elizabethkingia spp. Staphylococcus strains showed the highest resistance by phenotypic and genotypic screening, with 8% of mastitis isolates identified as MDR. These MDR bacterial strains were also found to harbour antibiotic resistance genes such as mecA (21%), blaZ (43%), gyrA (50%), and gyrB (59%). The tissue culture plate assay showed 11 multidrug-resistant bacteria as strong biofilm formers and the biofilm-related atlE gene was analysed from Staphylococcal strain M33.1. The findings highlight a public health risk from resistant dairy bacteria, emphasizing prophylactic measures and responsible antimicrobial use to prevent zoonotic transmission. | 2025 | 41115007 |
| 2355 | 6 | 0.9998 | Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level. | 2012 | 24669633 |
| 2677 | 7 | 0.9998 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 2679 | 8 | 0.9998 | Detection and Molecular Characterization of Staphylococci from Eggs of Household Chickens. Eggs are a healthy and nutritious food source, but may be contaminated by bacteria. Previous studies have reported the presence of staphylococci in eggs of farmed chickens, but no study has evaluated the staphylococcal population of eggs from household chickens. In this study, staphylococci from eggs (n = 275) of household chickens collected from November 2016 to March 2017 from different villages of Khyber Pakhtunkhwa province, Pakistan, were characterized. Seven species of staphylococci were identified from 65 eggs, including the predominant species, Staphylococcus xylosus (49/275; 17.8%). S. xylosus isolates (n = 73) were tested for antimicrobial susceptibility, presence of resistance genes, genetic relatedness, and inhibitory activity against other bacteria. The majority of isolates were resistant to oxacillin (83.6%) and tetracycline (24.7%), but also exhibited resistance to daptomycin and linezolid (5.5% each). Of the 10 resistance genes tested, isolates were only positive for mecA (35.6%; 26/73), mecC/C1 (2.7%; 2/73), and tet(K) (14/73; 19%). Using pulsed-field gel electrophoresis (PFGE), nine clusters had identical PFGE patterns. Isolates produced inhibitory activity against a broad spectrum of bacteria; 20.5%, 19.2%, 17.8%, and 16.4% of S. xylosus were able to inhibit growth of Salmonella enterica serotype Typhi, methicillin-susceptible Staphylococcus aureus, Escherichia coli, and methicillin-resistant Staphylococcus aureus, respectively. This study demonstrated the presence of genetically related antimicrobial-resistant S. xylosus from eggs from household chickens. Like table eggs, eggs of household chickens also contain staphylococci that may be resistant to antimicrobials used to treat human infections. These data will allow comparison between staphylococci from eggs from different sources and may indicate the relative safety of eggs from household chickens. Further study of these egg types and their microbial composition is warranted. | 2019 | 31009262 |
| 2349 | 9 | 0.9998 | DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene. | 2024 | 39724880 |
| 2658 | 10 | 0.9998 | Rapid detection of major enterotoxin genes and antibiotic resistance of Staphylococcus aureus isolated from raw milk in the Yazd province, Iran. INTRODUCTION: Raw milk is a nutrient-rich food, but it may harbour harmful bacteria, such as enterotoxigenic Staphylococcus aureus (S. aureus), which can cause staphylococcal food poisoning. Antibiotic resistance of S. aureus in raw milk can increase the risk of such infections, particularly among susceptible individuals. OBJECTIVE: This study aimed to investigate the prevalence of enterotoxin genes a, d, g, i and j and the antibiotic resistance of S. aureus isolated from raw milk samples. METHODS: During a 6-month sampling period, 60 raw milk specimens were obtained from diverse locations in Yazd province, Iran. Antibiogram profiling was conducted via the disc diffusion method. In addition, staphylococcal enterotoxin (SE) genes a, d, g, i, and j were detected through real-time PCR analysis. RESULTS: Bacteriological assays confirmed the presence of S. aureus in 11 samples (18.3%). All isolates demonstrated 100% resistance to penicillin G but exhibited sensitivity to vancomycin, while resistance to other antibiotics ranged from 36.4% to 45.5%. The prevalence of enterotoxin genes in these strains showed variable distribution, with sea being the predominant SE (45.5%), followed by sed (36.4%), seg (18.2), sej and sei (9.1% each). CONCLUSIONS: This study discovered the presence of multiple enterotoxins in S. aureus strains obtained from raw milk samples. These strains also demonstrated resistance to a variety of antibiotics. Since enterotoxigenic S. aureus is known to cause human food poisoning, monitoring food hygiene practices, especially during raw milk production, is critical. | 2024 | 38519836 |
| 2667 | 11 | 0.9998 | Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid. | 2016 | 27622161 |
| 2681 | 12 | 0.9998 | Determination of the Prevalence and Antimicrobial Resistance of Enterococcus faecalis and Enterococcus faecium Associated with Poultry in Four Districts in Zambia. The presence of antimicrobial-resistant Enterococci in poultry is a growing public health concern worldwide due to its potential for transmission to humans. The aim of this study was to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined using the disc diffusion method and antimicrobial resistance genes were detected using polymerase chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492, 95% CI: 27.1-35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI: 30.3-46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3-16.7). Most of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%). The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of poultry production, leading to significant public health concerns. | 2023 | 37107019 |
| 2660 | 13 | 0.9998 | Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria. | 2021 | 33934873 |
| 2350 | 14 | 0.9998 | Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. OBJECTIVE: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. METHODS: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. RESULTS: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. CONCLUSION: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment. | 2024 | 38933775 |
| 2378 | 15 | 0.9998 | Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Canine superficial pyoderma (CSP) is a bacterial infection secondary to several skin diseases of the dog. Staphylococcus pseudintermedius, which is a commensal bacterium of the dog's skin, is the leading agent found in dogs affected by CSP, which can progress to deep pyoderma. It is also of clinical significance because S. pseudintermedius strains carry antimicrobial resistance genes, mainly the mecA gene. In this descriptive longitudinal study, molecular characterization of bacterial isolates from dogs affected by CSP was performed in addition to phenotyping, antimicrobial profiling, and assessment of resistance carriage status. Fifty dogs (24 females and 26 males) attending the CES University Veterinary Teaching Hospital were included in the study. CSP was confirmed according to clinical signs and cytological examination. Swabs were taken from active skin lesions for bacterial culture, and phenotyping and antimicrobial resistance profiles were assessed using API-Staph phenotyping and the Kirby-Bauer method, respectively. We also performed molecular detection and characterization of the mecA and nuc encoding gene of coagulase-positive Staphylococci. The mecA gene frequency was established by qPCR amplification of a 131bp gene fragment. Data were evaluated by descriptive statistics. Erythema, peeling, pruritus, and alopecia were the predominant symptoms (72, 56, and 46%, respectively). We isolated bacteria compatible with Staphylococcus species from all samples tested. API phenotyping showed 83.1 to 97.8% compatibility with S. pseudintermedius. PCR-genotyping resulted in 15, 3, and 1 isolates positive for S. pseudintermedius, S. aureus, and S. schleiferi, respectively. Isolated strains showed high susceptibility to Imipenem, Ampicillin/Sulbactam, and Rifampicin (100, 94, and 92%, respectively). The highest resistance was against Vancomycin and Trimethoprim/Sulfamethoxazole (98 and 74%, respectively). S. pseudintermedius, S. aureus, and S. schleiferi isolates were cloned and shared 96% sequence homology. Finally, we found 62% carriage status of the mecA gene in isolates of CSP patients, although only 36% of the isolates were methicillin-resistant. Identification of three Staphylococcus species causing CSP, high-level resistance against conventional antimicrobials, and carriage of the mecA gene highlight the importance of performing molecular characterization of bacteria causing dermatological conditions in dogs. | 2020 | 32793641 |
| 2662 | 16 | 0.9998 | Nasal Carriage of Methicillin-Resistant Staphylococcus Sciuri Group by Residents of an Urban Informal Settlement in Kenya. BACKGROUND: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. OBJECTIVES: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. METHOD: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK(®)2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. CONCLUSION: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts. | 2023 | 37529492 |
| 2379 | 17 | 0.9998 | Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Dogs are reservoirs of different Staphylococcus species, but at the same time, they could develop several clinical forms caused by these bacteria. The aim of the present investigation was to characterize 50 clinical Staphylococcus isolates cultured from sick dogs. Bacterial species determination, hemolysins, protease, lipase, gelatinase, slime, and biofilm production, presence of virulence genes (lukS/F-PV, eta, etb, tsst, icaA, and icaD), methicillin resistance, and antimicrobial resistance were investigated. Most isolates (52%) were Staphylococcus pseudointermedius, but 20% and 8% belonged to Staphylococcusxylosus and Staphylococcus chromogenes, respectively. Gelatinase, biofilm, and slime production were very common characters among the investigated strains with 80%, 86%, and 76% positive isolates, respectively. Virulence genes were detected in a very small number of the tested strains. A percentage of 14% of isolates were mecA-positive and phenotypically-resistant to methicillin. Multi-drug resistance was detected in 76% of tested staphylococci; in particular, high levels of resistance were detected for ampicillin, amoxicillin, clindamycin, and erythromycin. In conclusion, although staphylococci are considered to be opportunistic bacteria, the obtained data showed that dogs may be infected by Staphylococcus strains with important virulence characteristics and a high antimicrobial resistance. | 2021 | 33801518 |
| 2670 | 18 | 0.9998 | Molecular characterisation and antimicrobial resistance of Streptococcus agalactiae isolates from dairy farms in China. INTRODUCTION: Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. MATERIAL AND METHODS: A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. RESULTS: The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. CONCLUSION: The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria. | 2023 | 38143824 |
| 2661 | 19 | 0.9998 | Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. BACKGROUND AND AIM: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. MATERIALS AND METHODS: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital's cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. RESULTS: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. CONCLUSION: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants. | 2022 | 35698521 |