# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2338 | 0 | 1.0000 | Characterization of disinfectant susceptibility profiles among clinical isolates of Acinetobacter baumannii in Ardabil, Iran. Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL-1, chlorhexidine digluconate 8-64 μg mL-1, triclosan 1-32 μg mL-1, and formaldehyde 128 μg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 μg mL-1, each one) and triclosan (4 μg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates. | 2023 | 38063878 |
| 2288 | 1 | 0.9995 | Resistance of Stenotrophomonas maltophilia to Fluoroquinolones: Prevalence in a University Hospital and Possible Mechanisms. OBJECTIVE: The purpose of this study was to investigate the clinical distribution and genotyping of Stenotrophomonas maltophilia, its resistance to antimicrobial agents, and the possible mechanisms of this drug resistance. METHODS: S. maltophilia isolates were collected from clinical specimens in a university hospital in Northwestern China during the period between 2010 and 2012, and were identified to the species level with a fully automated microbiological system. Antimicrobial susceptibility testing was performed for S. maltophilia with the Kirby-Bauer disc diffusion method. The minimal inhibitory concentrations (MICs) of norfloxacin, ofloxacin, chloramphenicol, minocycline, ceftazidime, levofloxacin and ciprofloxacin against S. maltophilia were assessed using the agar dilution method, and changes in the MIC of norfloxacin, ciprofloxacin and ofloxacin were observed after the addition of reserpine, an efflux pump inhibitor. Fluoroquinolone resistance genes were detected in S. maltophilia using a polymerase chain reaction (PCR) assay, and the expression of efflux pump smeD and smeF genes was determined using a quantitative fluorescent (QF)-PCR assay. Pulsed-field gel electrophoresis (PFGE) was employed to genotype identified S. maltophilia isolates. RESULTS: A total of 426 S. maltophilia strains were isolated from the university hospital from 2010 to 2012, consisting of 10.1% of total non-fermentative bacteria. The prevalence of norfloxacin, ciprofloxacin and ofloxacin resistance was 32.4%, 21.9% and 13.2% in the 114 S. maltophilia isolates collected from 2012, respectively. Following reserpine treatment, 19 S. maltophilia isolates positive for efflux pump were identified, and high expression of smeD and smeF genes was detected in two resistant isolates. gyrA, parC, smeD, smeE and smeF genes were detected in all 114 S. maltophilia isolates, while smqnr gene was found in 25.4% of total isolates. Glu-Lys mutation (GAA-AAA) was detected at the 151th amino acid of the gyrA gene, while Gly-Arg mutation (GGC-CGC) was found at the 37th amino acid of the parC gene. However, no significant difference was observed in the prevalence of gyrA or parC mutation between fluoroquinolone-resistant and -susceptible isolates (p> 0.05). The smqnr gene showed 92% to 99% heterogenicity among the 14 S. maltophilia clinical isolates. PFGE of 29 smqnr gene-positive S. maltophilia clinical isolates revealed 25 PFGE genotypes and 28 subgenotypes. CONCLUSIONS: Monitoring the clinical distribution and antimicrobial resistance of S. maltophilia is of great significance for the clinical therapy of bacterial infections. Reserpine is effective to inhibit the active efflux of norfloxacin, ciprofloxacin and ofloxacin on S. maltophilia and reduce MIC of fluoroquinolones against the bacteria. The expression of efflux pump smeD and smeF genes correlates with the resistance of S. maltophilia to fluoroquinolones. | 2015 | 25985315 |
| 2337 | 2 | 0.9995 | Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. BACKGROUND: Although antiseptics are some of the most widely used antibacterials in hospitals, there is very little information on reduced susceptibility to these biocides and its relationship with resistance to antibiotics. AIM: To determine the relationship between reduced susceptibility to biocides and the carriage of antiseptic resistance genes, cepA, qacΔE and qacE, as well as identifying the role of efflux pumps in conferring reduced susceptibility. METHODS: Susceptibility was assessed for five biocides: chlorhexidine, benzalkonium chloride, Trigene, MediHex-4, Mediscrub; and for 11 antibiotics against 64 isolates of Klebsiella pneumoniae. Susceptibility to all compounds was tested by the agar double dilution method (DDM) and the effect of efflux pumps on biocides determined by repeating the susceptibility studies in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The presence of the cepA, qacΔE and qacE genes was identified by polymerase chain reaction. FINDINGS: The bacteria were not widely antibiotic resistant though a few showed reduced susceptibility to cefoxitin, chloramphenicol and rifampicin and later-generation cephalosporins but not to carbapenems. Biocide susceptibility, tested by DDM, showed that 50, 49 and 53 strains had reduced susceptibility to chlorhexidine, Trigene and benzalkonium chloride, respectively. The antiseptic resistance genes cepA, qacΔE and qacE were found in 56, 34 and one isolates respectively and their effects as efflux pumps were determined by CCCP (10 mg/L), which decreased the minimum inhibitory concentrations (MICs) of chlorhexidine and Medihex-4 by 2-128-fold but had no impact on the MICs of benzalkonium chloride, Trigene and Mediscrub. CONCLUSION: There was a close link between carriage of efflux pump genes, cepA, qacΔE and qacE genes and reduced biocide susceptibility, but not antibiotic resistance, in K. pneumoniae clinical isolates. | 2012 | 22498639 |
| 1273 | 3 | 0.9994 | Trimethoprim resistance in gram-negative bacteria isolated in South Africa. Resistance to trimethoprim was surveyed in 2914 Gram-negative bacteria isolated in three hospitals in South Africa. Bacteria were collected from November 1986 to January 1987 and the minimum inhibitory concentration (MIC) of trimethoprim for each isolate was determined. The overall resistance rate (MIC greater than 8 mg/l) was 56.2%, and high-level resistance (MIC greater than 1024 mg/l) occurred in 24.0% of the total. The frequency of resistance in isolates of Enterobacteriaceae was 48.5% (MIC greater than 8 mg/l). Of the organisms isolated from urine specimens, 49.1% were resistant to trimethoprim, 71.8% of these being highly resistant. Investigation of 36 isolates for the presence of the type I and/or type II dihydrofolate reductase genes showed that eight isolates reacted with the type I probe but none with the type II probe. | 1989 | 2621180 |
| 2299 | 4 | 0.9994 | Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. INTRODUCTION: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hospitals worldwide, posing a particular risk to immunocompromised patients. Elimination strategies may prevent these drug-resistant bacteria from spreading within hospital environments. Here, the susceptibility of patient-derived CRKP strains to common chemical disinfectants and possible correlations between the presence of drug-resistance genes and increased resistance to disinfectants were investigated. METHODS: The minimum inhibitory (MIC) and the minimum bactericidal concentrations (MBC) of common chemical disinfectants against each CRKP strain were determined using agar dilution; K. pneumoniae ATCC700603 served as a standard. The presence of the drug-resistance genes qacΔE, qacA, acrA and qacE was determined using PCR. RESULTS: A total of 27 clinically isolated CRKP strains collected in our hospital from 2011 to 2013 exhibited sensitivity to the following common chemical disinfectants in decreasing order of sensitivity: 75% ethyl alcohol > 2% glutaraldehyde > "84" disinfectant > 0.2% benzalkonium bromide > 2% iodine tincture > 1% iodophor > 0.1% chlorhexidine acetate. Of the 27 strains, 59, 41, 19 and 15% contained qacΔE, qacA, acrA and qacE resistance genes; 15% carried acrA, qacΔE and qacA, and 26% carried both qacA and qacΔE. Comparative analysis indicated that drug-resistance genes were correlated with higher MIC values. CONCLUSION: These pan-resistant pathogenic CRKP strains contained various drug-resistance genes and exhibited relatively high resistance to ethyl alcohol, chlorhexidine acetate and iodophor. Monitoring the drug-resistance rates of CRKP strains displaying disinfectant resistance may facilitate appropriate and effective sterilisation and thus preventing the spread of these pan-resistant strains. | 2015 | 26184804 |
| 2300 | 5 | 0.9994 | Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant Klebsiella pneumoniae Strains at a Tertiary Hospital in China. Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (p < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (p < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (p < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug. | 2024 | 39166283 |
| 2160 | 6 | 0.9994 | Detection of AdeAB, TetA, and TetB efflux pump genes in clinical isolates of tetracycline-resistant Acinetobacter baumannii from patients of Suez Canal University Hospitals. BACKGROUND: Acinetobacter baumannii is an opportunistic bacteria associated primarily with hospital-acquired infections. Its tendency to acquire or donate resistance genes to neighboring bacteria is a major concern. Tetracyclines have shown promise in treating A. baumannii infections, but tetracycline resistance is growing globally in A. baumannii isolates. OBJECTIVES: The study aimed to study (1) the prevalence of multidrug-resistant (MDR) A. baumannii infections at Suez Canal University Hospitals, (2) the distribution of efflux pump genes AdeA &B, TetA, and TetB, and (3) the effect of efflux pump inhibitor (CCCP) on tetracycline-resistant isolates. METHODS: Clinical samples (457) were collected (blood, urine, sputum, ETA, pus, and pleural fluid), followed by A. baumannii isolation and identification, PCR detection of efflux pump genes, and detection of tetracycline susceptibility and its MIC before and after treatment with the efflux pump inhibitor (CCCP). RESULTS: A total of 31 A. baumannii isolates were recovered (6.78%). The highest rate of isolation was from the ICU (48.3%) from the ET aspirate samples (48.3%). The efflux system AdeA and TetB genes were distributed in 100% of isolates, whereas AdeB was found in 93.5% of isolates and the TetA gene in 87.1% of isolates. All A. baumannii isolates were MDR showing resistance to three or more classes of antibiotics. 45% of the isolates showed a 4-fold reduction of MIC and 12.9% showed a 2-fold reduction in the MIC. CONCLUSIONS: Efflux pump is an important mechanism for tetracycline resistance among A. baumannii isolates. | 2025 | 39905304 |
| 1274 | 7 | 0.9993 | Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50) = 1 microg mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n = 113) with florfenicol MICs > or = 32 microg mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs = 32 microg mL(-1) and one with MIC = 64 microg mL(-1) were negative for the floR gene. | 2008 | 18680521 |
| 2291 | 8 | 0.9993 | Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Fluoroquinolones have been used for prophylaxis against infections in cancer patients but their impact on the resistance mechanisms still require further investigation. To elucidate mechanisms underlying ciprofloxacin (CIP) resistance in Gram-negative pathogens causing infections to cancer patients, 169 isolates were investigated. Broth microdilution assays showed high-level CIP resistance in 89.3% of the isolates. Target site mutations were analyzed using PCR and DNA sequencing in 15 selected isolates. Of them, all had gyrA mutations (codons 83 and 87) with parC mutations (codons 80 and 84) in 93.3%. All isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes and 56.8% of them were positive in this respect. Among PMQR genes, aac(6')-Ib-cr predominated (42.6%) while qnr genes were harbored by 32.5%. This comprised qnrS in 26.6% and qnrB in 6.5%. Clonality of the qnr-positive isolates using ERIC-PCR revealed that most of them were not clonal. CIP MIC reduction by CCCP, an efflux pump inhibitor, was studied and the results revealed that contribution of efflux activity was observed in 18.3% of the isolates. Furthermore, most fluoroquinolone resistance mechanisms were detected among Gram-negative isolates recovered from cancer patients. Target site mutations had the highest impact on CIP resistance as compared to PMQRs and efflux activity. | 2018 | 30115947 |
| 2298 | 9 | 0.9993 | Burden of biocide resistance among multidrug-resistant bacteria isolated from various clinical specimens in a tertiary care hospital. BACKGROUND: Most studies on biocide resistance and its genetic determinants arise from environmental or food-borne microbial isolates and only a few from clinically relevant isolates. OBJECTIVES: This study determines the proportion of biocide resistance against five commonly used biocides and detects biocide resistance genes among MDR bacterial isolates using PCR. METHODS: Consecutive MDR isolates (n = 180) were included (30 each of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus species) from clinical specimens of various inpatient units at JIPMER. The isolates were challenged at 0.5,1 and 2 Macfarland (McF) inoculum with discrete dilutions of disinfectants. The minimum bactericidal concentrations (MBCs) for 70% Ethanol, 1.5% Cresol, 2% Glutaraldehyde, 1% Cetrimide, and 1% Chlorhexidine were determined for the isolates using ATCC reference strains as controls. PCR was performed targeting qac A/B, G; smr; and nfx B genes. RESULTS: For all biocides, MDR isolates had MBCs less than the maximum MBCs of ATCC strains. For MDR K. pneumoniae, A. baumannii, and P. aeruginosa, the highest MBCs of chlorhexidine and cetrimide were ≥75 and ≥ 150 μg/ml respectively at 0.5 McF inoculum; whereas these organisms grew at higher inoculum (2McF) even at commercially recommended biocidal concentration (1%) corresponding to 750 and 1500 μg/ml of chlorhexidine and cetrimide respectively. Meanwhile, the highest MBCs of MDR E. coli were 75 and 150 μg/ml for chlorhexidine and cetrimide respectively. Interestingly, the Gram-positive cocci survived the action of up to 35% ethanol. The nfxB and qacG genes were detected in 87% and 6.67% of MDR P. aeruginosa isolates respectively with no biocide resistance genes detected among the other organisms. CONCLUSIONS: Biocide dilutions challenged with higher inoculum indicated a narrow margin of effectiveness for certain biocides. Although a significant proportion of clinical MDR isolates of P. aeruginosa harbored biocide resistance genes, this finding had no phenotypic correlation. | 2023 | 37769586 |
| 2287 | 10 | 0.9993 | Expression of norA, norB and norC efflux pump genes mediating fluoroquinolones resistance in MRSA isolates. INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones. | 2024 | 38635612 |
| 2283 | 11 | 0.9993 | Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. Clinical isolates of Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia were tested for resistance to antibiotics and to the antiseptics benzalkonium chloride and cetyltrimethylammonium bromide. Furthermore, they were examined for the presence of the resistance genes qacE and qacEDelta1. qacEDelta1 was detected by PCR in 10% of all (n=103) and in 81% of multiply antibiotic-resistant strains (n=15). qacE was found in only one of 37 P. aeruginosa strains. The minimum inhibitory concentrations of benzalkonium chloride, cetyltrimethylammonium bromide, and ethidium bromide were not significantly different for qacEDelta1/qacE-positive or -negative strains. Our data indicate that multiply antibiotic-resistant Gram-negative bacteria are not necessarily more resistant to quaternary ammonium compounds than antibiotic-sensitive strains even though qacE or qacEDelta1 is present. | 2000 | 10650208 |
| 2322 | 12 | 0.9993 | Antimicrobial Susceptibility of Fresh Produce-Associated Enterobacteriaceae and Enterococci in Oman. Fresh produce bacteria may have phenotypic and/or genotypic antimicrobial resistance traits that may lead to various consequences on the environment and human health. This study evaluated the susceptibility of fresh produce bacteria (banana, cabbage, capsicum, carrots, cucumber, dates, lettuce, mango, papaya, pomegranate, radish, tomato and watermelon) to chlorhexidine and the antibiotic resistance of enterococci. Eighty-eight Enterobacteriaceae bacteria and 31 enterococci were screened for their susceptibility to chlorhexidine using the broth microdilution method. Susceptibility of enterococci to various antibiotics was determined using agar dilution, colorimetric, and Kirby-Bauer disc diffusion methods. Enterococci were more susceptible to chlorhexidine than Enterobacteriaceae indicated by chlorhexidine minimum inhibitory concentration (MIC) of 1 to 8 µg/mL for the former and 1 to 64 µg/mL for the latter. The IntI 1, qacEΔ1, qacE and qacG genes were distributed weakly in three, two, two, and three Enterobacteriaceae isolates, respectively. Enterococci had resistance to chloramphenicol (3%), tetracycline (19%), erythromycin (68%), ciprofloxacin (55%), and vancomycin (10%) while 19% of them were multi-drug resistant. In conclusion, this research detected a low to moderate level of antibiotic resistance in enterococci. Some Enterobacteriaceae bacteria had reduced chlorhexidine MICs that were not 10x less than the recommended concentration (100-200 µg/mL) in food production areas which might challenge the success of the disinfection processes or have clinical implications if the involved bacteria are pathogens. The prevalence of antimicrobial-resistant bacteria in fresh produce should be monitored in the future. | 2022 | 36230161 |
| 2286 | 13 | 0.9993 | Association of Antibacterial Susceptibility Profile with the Prevalence of Genes Encoding Efflux Proteins in the Bangladeshi Clinical Isolates of Staphylococcus aureus. Expelling antibiotic molecules out of the cell wall through multiple efflux pumps is one of the potential mechanisms of developing resistance against a wide number of antibiotics in Staphylococcus aureus. The aim of this study was to investigate the association between the antibiotic susceptibility profile and the prevalence of different efflux pump genes i.e., norA, norB, norC, mepA, sepA, mdeA, qacA/B, and smr in the clinical isolates of S. aureus. Sixty clinical isolates were collected from a tertiary level hospital in Bangladesh. The disc diffusion method using ten antibiotics of different classes was used to discern the susceptibility profile. polymerase chain reaction (PCR) was employed to observe the resistance patterns and to detect the presence of plasmid and chromosomal encoded genes. Among the clinical isolates, 60% (36 out of 60) of the samples were Methicillin-resistant Staphylococcus aureus (MRSA), whereas 55% (33 out of 60) of the bacterial samples were found to be multi-drug resistant. The bacteria showed higher resistance to vancomycin (73.33%), followed by ciprofloxacin (60%), cefixime (53.33%), azithromycin (43.33%), and amoxicillin (31.67%). The prevalence of the chromosomally-encoded efflux genes norA (91.67%), norB (90%), norC (93.33%), mepA (93.33%), sepA (98.33%), and mdeA (93.33%) were extremely high with a minor portion of them carrying the plasmid-encoded genes qacA/B (20%) and smr (8.33%). Several genetic combinations of efflux pump genes were revealed, among which norA + norB + norC + mepA + sepA + mdeA was the most widely distributed combination among MRSA and MSSA bacteria that conferred resistance against ciprofloxacin and probably vancomycin. Based on the present study, it is evident that the presence of multiple efflux genes potentiated the drug extrusion activity and may play a pivotal role in the development of multidrug resistance in S. aureus. | 2023 | 36830216 |
| 1182 | 14 | 0.9992 | Disinfectant and heavy metal resistance profiles in extended spectrum β-lactamase (ESBL) producing Escherichia coli isolates from chicken meat samples. Biocidal compounds are frequently used as disinfectants in poultry industry and their widespread usage has risen concern due to the co-selection and persistence of antimicrobial resistance among bacteria. In this study, extended spectrum β-lactamase producing (ESBL) Escherichia coli isolates (n = 60) obtained from chicken meat were characterized by Pulsed Field Gel Electrophoresis (PFGE) and further tested for disinfectant and heavy metal resistance phenotypically and genotypically. Plasmid replicon types of these isolates were also determined. ESBL producing E. coli isolates were found to be resistant to ciprofloxacin (48.3 %) and gentamicin (15 %). The majority of these isolates (46.5 %) carried bla(CTX-M-55) gene. The isolates showed higher minimal inhibitory concentrations to cetylpyridinium chloride (90 %), cetyltrimethylammonium bromide (50 %), hexadecyltrimethylammonium bromide (46.7 %), triclosan (38.3 %), benzalkonium chloride (28.3 %), chlorhexidine (21.7 %), acriflavine (3.3 %), benzethonium chloride (1.7 %) and N-alkyl dimethyl benzyl ammonium chloride (1.7 %), but 18.3 % of the isolates were resistant to triclosan. Of the quaternary ammonium compounds (QACs) tolerance genes, mdfA, sugE(c), ydgE and ydgF were most present in all isolates, but the qacE, qacG, oqxA and oqxB genes were not detected. Of genes mediating the heavy metal resistance, the zitB gene was detected in all isolates, whereas the copA and cueO genes were detected in 96.67 % and 95 % of isolates, respectively. The IncFIB plasmid was commonly present (93.3 %) in ESBL producing E. coli isolates. Consequently, given the detection of genes mediating disinfectant and heavy metal resistance commonly in ESBL producing E. coli isolates as well as high rate of MICs against disinfectant compounds, the use of QACs for decontamination of the facilities may not be as effective as expected in poultry sector in Turkey. | 2022 | 35843029 |
| 1251 | 15 | 0.9992 | Biofilm Formation and Plasmid-Mediated Quinolone Resistance Genes at Varying Quinolone Inhibitory Concentrations in Quinolone-Resistant Bacteria Superinfecting COVID-19 Inpatients. The likelihood of antimicrobial failure in COVID-19 patients with bacterial superinfection arises from both phenotypic (biofilms) and genotypic mechanisms. This cross-sectional study aimed to determine the inhibitory concentrations of quinolones-nalidixic acid, norfloxacin, ciprofloxacin, ofloxacin, and levofloxacin-in biofilm formers (minimum biofilm inhibitory concentration [MBIC]) and nonformers (minimum inhibitory concentration [MIC]) and correlate inhibitory concentrations with plasmid-mediated quinolone resistance (PMQR) genes in quinolone-resistant bacteria isolated from COVID-19 inpatients. Quinolone-resistant bacteria (n = 193), verified through disc diffusion, were tested for quinolone inhibitory concentrations using broth microdilution and biofilm formation using microtiter plate methods. The polymerase chain reaction was used to detect PMQR genes. Study variables were analyzed using SPSS v.17.0, with a significance level set at P <0.05. MIC-to-MBIC median fold increases for ciprofloxacin, ofloxacin, and levofloxacin were 128 (2-8,192), 64 (4-1,024), and 32 (4-512) in gram-positive cocci (GPC, n = 43), respectively, whereas they were 32 (4-8,192), 32 (4-2,048), and 16 (2-1,024) in fermentative gram-negative bacilli (F-GNB, n = 126) and 16 (4-4,096), 64 (2-64), and 16 (8-512) in nonfermentative gram-negative bacilli (NF-GNB, n = 24). In biofilm-forming F-GNB and NF-GNB, qnrB (10/32 versus 3/10), aac(6')-Ib-cr (10/32 versus 4/10), and qnrS (9/32 versus 0/10) genes were detected. A 32-fold median increase in the MIC-to-MBIC of ciprofloxacin was significantly (P <0.05) associated with qnrA in F-GNB and qnrS in NF-GNB. Biofilms formed by F-GNB and NF-GNB were significantly associated with the aac(6')-Ib-cr and qnrS genes, respectively. Nearly one-third of the superinfecting bacteria in COVID-19 patients formed biofilms and had at least one PMQR gene, thus increasing the need for quinolones at higher inhibitory concentrations. | 2025 | 39561392 |
| 5938 | 16 | 0.9992 | Characterization of Mechanisms Lowering Susceptibility to Flumequine among Bacteria Isolated from Chilean Salmonid Farms. Despite their great importance for human therapy, quinolones are still used in Chilean salmon farming, with flumequine and oxolinic acid currently approved for use in this industry. The aim of this study was to improve our knowledge of the mechanisms conferring low susceptibility or resistance to quinolones among bacteria recovered from Chilean salmon farms. Sixty-five isolates exhibiting resistance, reduced susceptibility, or susceptibility to flumequine recovered from salmon farms were identified by their 16S rRNA genes, detecting a high predominance of species belonging to the Pseudomonas genus (52%). The minimum inhibitory concentrations (MIC) of flumequine in the absence and presence of the efflux pump inhibitor (EPI) Phe-Arg-β-naphthylamide and resistance patterns of isolates were determined by a microdilution broth and disk diffusion assays, respectively, observing MIC values ranging from 0.25 to >64 µg/mL and a high level of multi-resistance (96%), mostly showing resistance to florfenicol and oxytetracycline. Furthermore, mechanisms conferring low susceptibility to quinolones mediated by efflux pump activity, quinolone target mutations, or horizontally acquired resistance genes (qepA, oqxA, aac(6')-lb-cr, qnr) were investigated. Among isolates exhibiting resistance to flumequine (≥16 µg/mL), the occurrence of chromosomal mutations in target protein GyrA appears to be unusual (three out of 15), contrasting with the high incidence of mutations in GyrB (14 out of 17). Bacterial isolates showing resistance or reduced susceptibility to quinolones mediated by efflux pumps appear to be highly prevalent (49 isolates, 75%), thus suggesting a major role of intrinsic resistance mediated by active efflux. | 2019 | 31847389 |
| 1328 | 17 | 0.9992 | Analysis of Resistance to Macrolide-Lincosamide-Streptogramin B Among mecA-Positive Staphylococcus Aureus Isolates. OBJECTIVES: Genetic determinants conferring resistance to macrolide, lincosamide, and streptogramin B (MLS(B)) via ribosomal modification such as, erm, msrA/B and ereA/B genes are distributed in bacteria. The main goals of this work were to evaluate the dissemination of MLS(B) resistance phenotypes and genotypes in methicillin-resistant Staphylococcus aureus (MRSA) isolates collected from clinical samples. METHODS: A total of 106 MRSA isolates were studied. Isolates were recovered from 3 hospitals in Tehran between May 2016 to July 2017. The prevalence of MLS(B)-resistant strains were determined by D-test, and then M-PCR was performed to identify genes encoding resistance to macrolides, lincosamides, and streptogramins in the tested isolates. RESULTS: The frequency of constitutive resistance MLS(B), inducible resistance MLS(B) and MS(B) resistance were 56.2%, 22.9%, and 16.6%, respectively. Of 11 isolates with the inducible resistance MLS(B) phenotype, ermC, ermB, ermA and ereA were positive in 81.8%, 63.6%, 54.5% and 18.2% of these isolates, respectively. In isolates with the constitutive resistance MLS(B) phenotype, the prevalence of ermA, ermB, ermC, msrA, msrB, ereA and ereB were 25.9%, 18.5%, 44.4%, 0.0%, 0.0%, 11.1% and 0.0%, respectively. CONCLUSION: Clindamycin is commonly administered in severe MRSA infections depending upon the antimicrobial susceptibility findings. This study showed that the D-test should be used as an obligatory method in routine disk diffusion assay to detect inducible clindamycin resistance in MRSA so that effective antibiotic treatment can be provided. | 2019 | 30847268 |
| 1249 | 18 | 0.9992 | High-Level Resistance to Aminoglycosides due to 16S rRNA Methylation in Enterobacteriaceae Isolates. Introduction: High-level aminoglycoside resistance due to methylase genes has been reported in several countries. The purpose of this study was to investigate the diversity of the genes encoding 16S rRNA methylase and their association with resistance phenotype in Enterobacteriacae isolates. Materials and Methods: Based on sampling size formula, from February to August 2014, a total of 307 clinical Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration (MIC) for aminoglycosides (except streptomycin), was used. Six 16S rRNA methylase genes (armA, npmA, and rmtA-D) were screened by PCR and sequencing assays. Results: In this study, 220 (71.7%) of 307 isolates were aminoglycoside resistant and 40 isolates (18.2%, 40/220) were positive for methylase genes. The frequency of armA, rmtC, npmA, rmtB, and rmtA genes was 9.5%, 4.5%, 3.6%, 2.3%, and 1%, respectively. The rmtD gene was not detected in the tested bacteria. Sixty percent of positive methylase gene isolates displayed high-level resistance (MIC ≥512 μg/mL to amikacin and kanamycin; and MIC ≥128 μg/mL to gentamicin and tobramycin). Conclusions: The prevalence of resistance to aminoglycoside in Iran is high. Furthermore, there is a statistically significant association between amikacin and kanamycin resistance with the presence of rmtC and rmtB genes. | 2019 | 31211656 |
| 2332 | 19 | 0.9992 | Detection and characterization of heteroresistance to chloramphenicol in Klebsiella pneumoniae isolates. BACKGROUND: Heteroresistance represents a significant pathway through which sensitive bacteria evolve into resistant strains, posing challenges for current clinical laboratory detection methods. OBJECTIVES: This study aimed to investigate the differences in resistance among K. pneumoniae isolates from various sources, assess the prevalence of chloramphenicol heteroresistance (CHR), and explore the potential causes and key genes associated with CHR. METHODS: K. pneumoniae was isolated from 801 samples obtained from various sources, and its susceptibility to antibacterial agents was assessed. The modified Kirby-Bauer disk diffusion method, population analysis profiling (PAP), and bactericidal curve assays were employed to identify heteroresistant bacteria. Additionally, the growth curve and stability of CHR strains were measured. To analyze the factors influencing the formation of CHR, we detected the resistance genes cmlA, cat1, and floR across 17 resistant subpopulations, along with virulence genes such as fimH, wabG, kfu, uge, and aerobactin. RESULTS: Among the 198 K. pneumoniae tested, resistance rates to nitrofurantoin, tetracycline, and chloramphenicol were found to be 73.74%, 57.58%, and 51.01%, respectively. The prevalence of CHR was determined to be 8.59% (17 out of 198), which significantly diminished the in vitro bactericidal efficacy of chloramphenicol. Notably, 76.47% (13/17) of the isolates harbored the cat1 and/or floR genes, while the prevalence of the virulence genes wabG, fimH, uge, and kfu was 100%, 100%, 76.47%, and 47.06%, respectively. CONCLUSION: The floR and/or cat1 genes are pivotal in the mechanism underlying heteroresistance to chloramphenicol, and the presence of virulence genes could further contribute to the development of CHR. | 2025 | 40993538 |