# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2319 | 0 | 1.0000 | Bacterial resistance to antibiotics and associated factors in two hospital centers in Lebanon from January 2017 to June 2017. GENERAL PRESENTATION: Resistance of bacteria to antibiotics is a universal problem. With the increase in the rate of resistance, knowledge of susceptibility patterns is essential to guide antimicrobial therapy. In Lebanon, many studies investigated this subject. OBJECTIVES: Determine the rate of multidrug and extremely drug-resistant bacteria as well as the patterns of resistance and the factors associated with this resistance. MATERIALS AND METHODS: A cross-sectional study was performed using the cultures from the labs of two university hospitals in Lebanon. Bacteria were divided into four groups: sensitive, multidrug-, extremely- and pan-drug resistant. Patient information was obtained from the medical records. Using the SPSS software for Windows, version 20 (IBM, Armonk, USA), the frequency of the bacteria, their susceptibilities and the association of resistance with seven potential factors (age, gender, diabetes mellitus, cancer, chronic kidney disease, dialysis, previous hospitalization) were studied. RESULTS: The frequency of resistance was 53.7% (39.9% multidrug-resistant and 13.8% extremely drug-resistant). Escherichia coli strains were mostly susceptible to carbapenems and tigecycline; and nitrofurantoine and fosfomycin in urine. Pseudomonas and Acinetobacter species were mostly sensitive to colistin. Klebsiella species were mostly susceptible to amikacin and carbapenems. MRSA rates were 34.8%. Association was seen between the resistant bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. CONCLUSION: Resistance of bacteria to drugs in Lebanon is increasing. Significant association is seen between these bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. | 2020 | 34368694 |
| 2308 | 1 | 0.9999 | Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted. | 2023 | 37307126 |
| 2304 | 2 | 0.9999 | Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. BACKGROUND: The misuse of antimicrobial agents increases drug resistance in bacteria. METHODS: The correlation between antimicrobial agent consumption and related resistance in the Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis was analyzed during the period 2003-2011. RESULTS: Among these five bacteria, overall E. coli and K. pneumoniae were more commonly isolated from bloodstream than the other species. Regarding Enterobacteriaceae, E. coli and K. pneumoniae showed annual increases of resistance to the tested antimicrobial agents; conversely, P. mirabilis exhibited reduced resistance to cefuroxime, ceftriaxone and cefepime. In contrast to the relatively low antimicrobial resistance in P. aeruginosa, A. baumannii revealed high resistance, which was over 85% resistant rate to the tested antimicrobial agents and over 80% carbapenem resistance in 2011. E. coli, K. pneumoniae, and P. mirabilis differed in development of antimicrobial resistance after consumption of the antimicrobial agents. K. pneumoniae developed resistance to all antimicrobial groups, whereas resistance in P. mirabilis was not related to any antimicrobial consumption. P. aeruginosa developed resistance to β-lactam antimicrobials and aminoglycosides, whereas A. baumanii developed resistance to carbapenems after their use. CONCLUSION: The development of antimicrobial resistance was related to antimicrobial agents and bacterial species. | 2015 | 24863496 |
| 2316 | 3 | 0.9998 | Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics. | 2025 | 41036356 |
| 2303 | 4 | 0.9998 | Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. | 2019 | 31250593 |
| 1699 | 5 | 0.9998 | Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BACKGROUND: This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS: 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS: ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS: If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system. | 2024 | 39375619 |
| 2318 | 6 | 0.9998 | Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected. | 2020 | 32944333 |
| 1675 | 7 | 0.9998 | Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya. BACKGROUND: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening. Surveillance of bacterial infections in ICUs and drug resistance will help to understand the magnitude of the problem it poses and inform response strategies. We assessed bacterial infections in ICU setting by identifying prevalent Gram-negative bacterial species and characterized their antibiotic susceptibility patterns. METHODS: Cross-sectional samples collected from Kenyatta National Hospital ICU between January and June 2021 were cultured and phenotypic identification of culture-positive samples performed using VITEK 2. Antibiotic susceptibility patterns were determined based on Antimicrobial Susceptibility Testing (AST) results. Cephalosporin-resistant Gram-negative bacteria were assessed by PCR to detect the presence of ESBL genes including ( (bla) CTX-M, (bla) SHV, (bla) TEM, (bla) OXA). RESULTS AND DISCUSSION: Out of the 168 Gram-negative isolates, Acinetobacter baumanii was the most abundant (35%). Other isolates that were present at frequencies more than 15% are Klebsiella pneumoniae and Escherichia. coli. A. baumaniii is known to be a notorious bacterium in ICU due to its multidrug resistance nature. Indeed, A. baumanii isolates from Kenyatta National Hospital showed significantly high level of phenotypic resistance. Concordant with the high level of phenotypic resistance, we found high carriage of the ESBL genes among the isolates analysed in this study. Moreover, majority of isolates harboured all the four ESBL genes. CONCLUSION: A high rate of phenotypic and genetic resistance was detected among the tested isolates. Resistance to cephalosporins was primarily driven by acquisition of the ESBL genes. The high prevalence rate of ESBL genes in ICU bacterial isolates shown in this study has a important implication for ICU patient management and general antibiotics use. | 2023 | 39850338 |
| 2253 | 8 | 0.9998 | Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings. | 2024 | 39199988 |
| 2329 | 9 | 0.9998 | Antibiotic resistance and genotyping of clinical group B Salmonella isolated in Accra, Ghana. AIMS: The purpose of this study was to investigate the antibiotic resistance and clonal lineage of serogroup B Salmonella isolated from patients suspected of suffering from enteric fever in Accra, Ghana. METHODS AND RESULTS: Serogroup B Salmonella were isolated from blood (n=28), cerebral spinal fluid (CSF) (n=1), or urine (n=2), and identified based on standard biochemical testing and agglutinating antisera. Isolates were examined for their susceptibility to ampicillin, chloramphenicol, tetracycline and trimethoprim-sulfamethoxazole. Most of the isolates could be classified as multiple-drug resistant. Furthermore, the genetic location of resistance genes was shown to be on conjugative plasmids. Genetic fingerprinting by plasmid profiling, enterobacterial repetitive intergenic consensus (ERIC)-PCR, and repetitive element (REP)-PCR were performed to determine the diversity among the isolates. Plasmid profiling discriminated five unique groupings, while ERIC-PCR and REP-PCR resulted in two and three groupings, respectively. CONCLUSIONS: A high rate of antibiotic resistance was associated with the Salmonella isolates and the genes responsible for the resistance are located on conjugative plasmids. Also, there appears to be minimal diversity associated with the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: As a result of the increasing antibiotic resistance among bacteria of all genera, surveys to monitor microbial populations are critical to determine the extent of the problem. The inability to treat many infectious diseases with current antibiotic regimens should prompt the medical community to be more prudent with its antibiotic use. | 2003 | 12534821 |
| 1701 | 10 | 0.9998 | Type VI secretion system (T6SS) in Klebsiella pneumoniae, relation to antibiotic resistance and biofilm formation. BACKGROUND AND OBJECTIVES: The type VI secretion system (T6SS) was identified as a novel virulence factor in many Gram-negative bacteria. This study aimed to investigate the frequency of the T6SS genes in Klebsiella pneumoniae-causing different nosocomial infections, and to study the association between T6SS, antibiotic resistance, and biofilm formation in the isolated bacteria. MATERIALS AND METHODS: A total of fifty-six non-repetitive K. pneumoniae isolates were collected from different inpatients admitted at Sohag University Hospital from September 2022 to March 2023. Samples were cultured, colonies were identified, and antimicrobial sensitivity was done by VITEK® 2 Compact. Biofilm formation was checked using Congo red agar method. T6SS genes, and capsular serotypes were detected by PCR. RESULTS: Fifty-six K. pneumoniae isolates were obtained in culture. 38 isolates (67.86%) produced biofilm and 44 (78.57%) were positive for T6SS in PCR. There was a significant association between the presence of T6SS and resistance to the following antibiotics: meropenem, ciprofloxacin, and levofloxacin. All biofilm-forming bacteria had T6SS, with significant differences towards T6SS -positive bacteria. There was no significant association between T6SS, and the presence of certain capsular types. CONCLUSION: The T6SS-positive K. pneumoniae has greater antibiotic resistance, and biofilm-forming ability which is considered a potential pathogenicity of this emerging gene cluster. | 2023 | 37941882 |
| 2252 | 11 | 0.9998 | Antimicrobial resistance of 3 types of gram-negative bacteria isolated from hospital surfaces and the hands of health care workers. BACKGROUND: There has been an increased focus in recent years on antimicrobial resistance of bacteria isolated from clinical samples. However, resistance of bacteria from hospital environments has been less frequently investigated. METHODS: According to hygienic standard for disinfection in hospitals, samples were collected from hospital inanimate surfaces and the hands of health care workers after daily cleaning. An automatic microorganism analyzer was used to identify bacteria and test for antimicrobial susceptibility. Polymerase chain reaction was used to detect antimicrobial resistance genes. RESULTS: The detection rate of bacteria in general wards was significantly higher than that in intensive care units. The isolates were predominantly gram-negative (GN) bacteria, with Pseudomonas aeruginosa, Enterobacter cloacae, and Klebsiella pneumoniae being the most common. P aeruginosa isolates from other surfaces were much higher than those from medical instruments. E cloacae was isolated more frequently from the hands of other staff than medical staff. Most P aeruginosa and K pneumoniae were resistant to sulfonamides and β-lactam antimicrobials. Only 1 strain of P aeruginosa and 1 strain of K pneumoniae showed multiple antimicrobials resistance. CONCLUSIONS: The GN bacteria isolated from hospital environments demonstrate variable resistance to antimicrobials. | 2017 | 28780198 |
| 1700 | 12 | 0.9998 | The Prevalence of Multidrug-Resistant Enterobacteriaceae among Neonates in Kuwait. Increasing numbers of neonates with serious bacterial infections, due to resistant bacteria, are associated with considerable morbidity and mortality rates. The aim of this study was to evaluate the prevalence of drug-resistant Enterobacteriaceae in the neonatal population and their mothers in Farwaniya Hospital in Kuwait and to determine the basis of resistance. Rectal screening swabs were taken from 242 mothers and 242 neonates in labor rooms and wards. Identification and sensitivity testing were performed using the VITEK(®) 2 system. Each isolate flagged with any resistance was subjected to the E-test susceptibility method. The detection of resistance genes was performed by PCR, and the Sanger sequencing method was used to identify mutations. Among 168 samples tested by the E-test method, no MDR Enterobacteriaceae were detected among the neonates, while 12 (13.6%) isolates from the mothers' samples were MDR. ESBL, aminoglycosides, fluoroquinolones, and folate pathway inhibitor resistance genes were detected, while beta-lactam-beta-lactamase inhibitor combinations, carbapenems, and tigecycline resistance genes were not. Our results showed that the prevalence of antibiotic resistance in Enterobacteriaceae obtained from neonates in Kuwait is low, and this is encouraging. Furthermore, it is possible to conclude that neonates are acquiring resistance mostly from the environment and after birth but not from their mothers. | 2023 | 37189605 |
| 2317 | 13 | 0.9998 | Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. BACKGROUND: Acinetobacter baumannii (A. baumannii) is one of the most important bacteria causing nosocomial infections worldwide. Over the past few years, several strains of A. baumannii have shown antibiotic resistance, which may be due to the activity of efflux pumps. This study was aimed to detect AdeFG efflux pump genes and their contribution to antibiotic resistance in A. baumannii clinical isolates. METHODS: A total of 200 A. baumannii clinical isolates were collected from clinical specimens of ulcers, pus, sputum, and blood. All isolates were identified using standard biochemical tests. After identifying and cleaving the genome by boiling, PCR was performed on samples using specific primers. The antimicrobial susceptibility patterns were determined by disk diffusion, with and without CCCP efflux pump inhibitor were determined according to CLSI guidelines. RESULTS: We identified 60 clinical isolates of A. baumannii using biochemical differential tests. Identification of all A. baumannii isolates was confirmed by blaOXA-51-like PCR. According to the results of our study, 98.37% of A. baumannii isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. PCR results indicated that all 60 A. baumannii isolates contained the AdeF and 76.66% contained AdeG. CONCLUSION: the results of this study demonstrated that most of the A. baumannii isolates contained AdeF and AdeG efflux pump genes, and more than 98% of the isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. This reflected the significant contribution of efflux pumps to the development of resistance to these antibiotics. | 2020 | 32582800 |
| 2302 | 14 | 0.9998 | Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq. | 2024 | 39031267 |
| 2328 | 15 | 0.9998 | Detection of Plasmid-Mediated qnr Genes Among the Clinical Quinolone-Resistant Escherichia coli Strains Isolated in Tehran, Iran. BACKGROUND: Escherichia coli is one of the most important bacterial agents to cause urinary tract infections. Inappropriate and unnecessary administration of antibiotics has led to an increase in the appearance of multidrug-resistant E. coli isolates, limiting treatment options. The increase in a number of resistant strains of bacteria is a major concern of health authorities worldwide. OBJECTIVE: The purpose of this study was to determine the presence of the qnr genes among E. coli isolated from UTIs of patients in Baqiyatallah hospital in Tehran province, Iran. METHOD: Clinical urine samples of patients with suspected urinary tract infection were collected by standard methods in sterile disposable containers. After analysis of urine, microscopic observations and culture analysis, the bacterial genome was extracted by boiling method. PCR for detection of qnr genes including qnrA, qnrB and qnrS was done by specific primers, then PCR products were run using gel electrophoresis and visualized by gel documentation system. RESULTS: In the present study among the 95 isolates, 60 strains were resistant to nalidixic acid. PCR showed that 92 strains were positive for qnrS. The qnrA and qnrB genes were not found among the clinical isolates. CONCLUSION: Our finding indicates a high level of resistance against nalidixic acid among E. coli isolates recovered from the patients with UTI. Also, the high frequency of qnrS imposes the importance of survey of molecular and genetic analysis of mechanisms of quinolone resistance in E. coli strains. | 2018 | 30197698 |
| 2309 | 16 | 0.9998 | Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use. | 2024 | 39139624 |
| 2327 | 17 | 0.9998 | Identification of Quinolone and Colistin Resistance Genes in Escherichia Coli Strains Isolated from Mucosal Samples of Patients with Colorectal Cancer and Healthy Subjects. INTRODUCTION: Antibiotic resistance and extensive use of antibiotics are amongst the major causes of failure in antibiotic treatment. The purpose of this study was to investigate antibiotic resistance patterns and to identify resistance genes of quinolones and colistin in Escherichia coli. There are a very few patents on E. coli isolated from colorectal cancer. So, this study demonstrates that some bacteria resistant to ciprofloxacin have not resistance genes.Moreover, new patterns for E. coli are presented for isolates of patients with colorectal cancer. MATERIALS AND METHODS: Of the three healthy people, inflammatory bowel diseases (IBD) patients and colorectal cancer patients, 40 E. coli strains isolated after confirmation by biochemical and molecular methods. The susceptibility of isolates to antibiotics was investigated using disk diffusion test. After deoxyribonucleic acid (DNA) extraction, polymerase chain reaction (PCR) was used to identify genes encoding resistance to ciprofloxacin (qnr A, qnr B) and colistin (mcr-1). RESULTS: The results showed that E. coli isolates from colorectal cancer patients had the highest resistance to piperacillin (67.5%), ceftazidime (47.5%), and cefepime (42.5%). Also, E. coli strains isolated from IBD patients showed resistance to antibiotic ceftazidime 13%. More than 95% of E. coli strains isolated from healthy people were susceptible to antibiotics. Based on the results, 18 (15%) E. coli strains showed resistance to ciprofloxacin. The qnr A gene was detected in 61.11% isolates; however, qnr B was detected in 9 (50%) isolates. Isolates resistant to colistin were not observed. CONCLUSION: These findings indicate increased resistance of E. coli to ciprofloxacin in comparison with prior studies. Further research in this field will increase our knowledge and more effective exposure to the antibiotic resistance of the pathogenic microorganisms. | 2020 | 31198116 |
| 5787 | 18 | 0.9998 | Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes. | 2021 | 34550209 |
| 5791 | 19 | 0.9998 | Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Urinary tract infections (UTIs) are one of the most common infectious diseases at the community level. The continue misuse of antimicrobials is leading to an increase in bacterial resistance, which is a worldwide problem. The objective of this work was to study the incidence and pattern of antimicrobial resistance of the main bacteria responsible for UTI in the community of central and northern Portugal, and establish an appropriate empirical treatment. The urine samples were collected in Avelab—Laboratório Médico de Análises Clínicas over a period of 5 years (2015−2019). The urine cultures were classified as positive when bacterial growth was equal to or higher than 105 CFU/mL, and only for these cases, an antimicrobial susceptibility test was performed. Of the 106,019 samples analyzed, 15,439 had a urinary infection. Urinary infections were more frequent in females (79.6%) than in males (20.4%), affecting more elderly patients (56.9%). Escherichia coli (70.1%) was the most frequent uropathogen, followed by Klebsiella pneumoniae (8.9%). The bacteria responsible for UTI varied according to the patient’s sex, with the greatest differences being observed for Enterococcus faecalis and Pseudomonas aeruginosa, these being more prevalent in men. In general, there was a growth in bacterial resistance as the age of the patients increased. The resistance of bacteria in male patients was, in most cases, statistically different (Chi-Square test, p < 0.05) from that observed for bacteria isolated from female patients, showing, in general, higher resistance in male patients. Although E. coli was the most responsible uropathogen for UTI, it was among the bacteria most susceptible to antibiotics. The isolates of K. pneumoniae, Proteus vulgaris and Enterobacter showed high resistance to the tested antimicrobials. The most common multidrug-resistant (MDR) bacteria implicated in UTI were K. pneumoniae (40.4%) and P. aeruginosa (34.7%), but E. coli, the most responsible bacteria for UTI, showed a MDR of 23.3%. When we compared our results with the results from 10 years ago for the same region, in general, an increase in bacterial resistance was observed. The results of this study confirmed that urinary tract infections are a very common illness, caused frequently by resistant uropathogens, for which the antibiotic resistance profile has varied over a short time, even within a specific region. This indicates that periodically monitoring the microbial resistance of each region is essential in order to select the best empirical antibiotic therapy against these infections, and prevent or decrease the resistance among uropathogenic strains. | 2022 | 35740174 |