Resistance to nitrofurantoin is an indicator of extensive drug-resistant (XDR) Enterobacteriaceae. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
230601.0000Resistance to nitrofurantoin is an indicator of extensive drug-resistant (XDR) Enterobacteriaceae. Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options.Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited.Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae.Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR.Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla (PER-1), bla (NDM-1), bla (OXA-48), ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible.Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae, harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.202133830906
297310.9999An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.201830041652
86920.9999The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for bla(OXA-23) and bla(NDM-1) genes among the A. baumannii samples, one resistance gene (bla(CTX-M)) among E. coli, and two genetic determinants (bla(CTX-M) and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of bla(VEB) and bla(GES) genes, as well as between the aztreonam resistance phenotype and the presence of bla(GES) gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.202438786157
232630.9999Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Resistance to antimicrobial compounds in E. coli strains is increasing. Integrons are mobile genetic elements that lead to the spread and transfer of antibiotic resistance genes in bacteria. The aim of the present study was to determine the frequency of class 1 and 2 integrons as well as the antimicrobial resistance in E.coli strains isolated from urinary tract infections (UTIs). A total of 100 clinical isolates of uropathogenic E. coli (UPEC) were collected from patients having UTIs. These strains were identified using biochemical tests. The antibiotic susceptibility patterns of the isolated bacteria were determined in accordance with the standard method recommended by the clinical and laboratory standards institute (CLSI). The presence of class 1 and 2 integrons was determined by PCR method. The most frequent antibiotic resistance was observed to ampicillin (72%), co-trimoxazole (66%), and nalidixic acid (62%). The highest sensitivity was seen to amikacine (11%) and gentamicin (20%). The multi-drug resistance (MDR) was observed in 80% of E. coli isolates. 70% and 3% of E. coli isolate possessed class 1 and 2 integrons, respectively. Our data suggest that the antimicrobial resistance to some antibiotics as well as the frequency of class 1 and 2 integrons is very high in E. coli strains. Moreover, class 1 integrons are correlated with resistance to ampicillin, gentamicin, ciprofloxacin, co-trimoxazole, and nalidixic acid. Therefore, it is very important to monitor integron-induced drug resistance, especially class 1 integron, in order to control the urinary tract infections causing by MDR E.coli strains.202033680029
230540.9999In-vitro activity of tigecycline against multidrug-resistant Gram negative bacteria: The experience of a university hospital. The emergence of multidrug-resistant Gram negative bacteria has given rise to significant therapeutic challenges. These pathogens may have developed resistance to tigecycline, which is an alternative antibiotic used empirically in the treatment of serious infections. The objectives of this study were to identify the in-vitro activity of tigecycline against multidrug-resistant Gram negative strains isolated from clinical specimens and their related genes, at a university hospital. For this, 150 clinical isolates of multidrug-resistant Gram negative cultures from various clinical specimens were collected. Bacterial isolates were cultured, identified and their antibiotic susceptibilities were determined. Polymerase chain reaction was performed to amplify AcrB, AmpC, RamR, MexR, AdeB, TetA genes. Results revealed that all isolates were multidrug-resistant. The resistance of isolates was 91.4% to aztreonam, 94.6% to piperacillin, 34% to imipenem, 38.7% to meropenem, 71.3% to levofloxacin, 97.3% to ceftriaxone, 94.7% to cefepime, 9.3% to colistin, 78% to tetracycline, 21.4% to tigecycline and 68% to trimethoprim. AcrB, AmpC, RamR, MexR, AdeB, TetA genes were present in multidrug-resistant Gram negative bacteria. AcrB, RamR, TetA genes were related to tigecycline resistance. It is concluded that infections caused by multidrug-resistant Gram negative bacteria occur at a high rate. Most isolates were multi drug resistant, with 21.4% being resistant to tigecycline.202133743369
231650.9999Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
86360.9999Colistin-resistance genes in Escherichia coli isolated from patients with urinary tract infections. BACKGROUND: The incidence of antimicrobial resistance is alarmingly high because it occurs in humans, environment, and animal sectors from a "One Health" viewpoint. The emergence of plasmid-carried mobile colistin-resistance (MCR) genes limits the efficacy of colistin, which is the last-line treatment for multidrug resistance (MDR) against gram-negative infections. OBJECTIVES: The current study aimed to investigate emergence of colistin-resistance (MCR 1-5) genes in E. coli isolated from patients with urinary tract infections (UTIs) in Jordan. METHODS: E. coli (n = 132) were collected from urine specimens. The E. coli isolated from human UTI patients were examined the resistance to colistin based on the presence of MCR (1-5). All isolates were tested against 20 antimicrobials using the standard disk diffusion method. The broth microdilution technique was used to analyze colistin resistance. In addition, the MCR (1-5) genes were detected using multiplex PCR. RESULTS: Out of the 132 isolates, 1 isolate was colistin-resistant, having a minimum inhibitory concentration of 8 μg/mL and possessing MCR-1. All the E. coli isolates showed high resistance to penicillin (100%), amoxicillin (79.55%), cephalexin (75.76%), nalidixic acid (62.88%), tetracycline (58.33%), or cefepime (53.79). CONCLUSION: To our knowledge, this is the first report on the presence of plasmid-coded MCR-1 in E. coli from a patient with UTIs in Jordan. This is a problematic finding because colistin is the last-line drug for the treatment of infections caused by MDR gram-negative bacteria. There is a crucial need to robustly utilize antibiotics to control and prevent the emergence and prevalence of colistin-resistance genes.202438865304
195470.9999Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area.202133378222
215880.9999Relationship of OqxAB efflux pump to antibiotic resistance, mainly fluoroquinolones in Klebsiella pneumoniae, isolated from hospitalized patients. OBJECTIVES: This research was designed to study the prevalence of OqxAB efflux pump genes and also to investigate the relationship between efflux pump and resistance to antibiotics, especially to fluoroquinolones, evaluate the expression levels of OqxAB genes, and molecular typing of Klebsiella pneumoniae isolated from hospitalized patients in Hamadan hospitals, west of Iran. MATERIALS AND METHODS: In a cross-sectional study, 100 clinical strains of K. pneumoniae were isolated from hospitalized patients in three major teaching hospitals from January to June 2021. The antibiotic susceptibility of isolates was evaluated by the disk-diffusion agar method. The frequency of genes encoding oqxA and oqxB of efflux pump genes was investigated by PCR, and the expression of the oqxA efflux pump gene was investigated by the Real-time PCR method. The genetic relationship of K. pneumoniae isolates was analyzed by the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR technique. RESULTS: According to our results, the multi-drug resistance phenotype (MDR) in 65% and high prevalence resistance to ciprofloxacin in 89% of K. pneumoniae isolates was detected. The higher prevalence of oqxA (95%) and oqxB (98%) was also detected. There was a significant relationship between ciprofloxacin resistance and the oqxB gene as well as between ceftriaxone and chloramphenicol resistance and the oqxA gene. The expression of the oqxA gene was higher in ciprofloxacin-resistant isolates. CONCLUSION: The results of this study suggest a potential reservoir for the spread of OqxAB genes among hospital-acquired bacteria. Infection control strategies should be used prudently to reduce the spread of resistant strains of K. pneumoniae in hospitals.202336594055
85890.9999Minocycline and Omadacycline Resistance Among Carbapenem-Resistant Gram-Negative Bacteria: Antimicrobial Susceptibility Testing and Molecular Characterization. Increasing prevalence of multidrug-resistant infections has rendered the healthcare systems ineffective in managing infectious diseases. Drugs of "last resort" like carbapenems and polymyxins are becoming less effective in the management of antibiotic-resistant Gram-negative bacterial infections, leaving the clinicians with limited choices. Evaluation of the efficacy of other available broad-spectrum antibiotics (belonging to a different class) is warranted as a treatment alternative. The current study was undertaken to evaluate the in vitro antibacterial activity of minocycline and a new drug, omadacycline among carbapenem-resistant Gram-negative bacteria (GNB), isolated from clinical samples (pus and sputum) and to genotypically analyze them. A prospective cross-sectional study was conducted in a 3,200-bedded tertiary care medical center, located in Lucknow in the northern part of India. All the clinical isolates recovered from pus and sputum samples of patients admitted in intensive care units were processed according to the standard protocols. Identification and antibiotic susceptibility testing were performed, and carbapenem-resistant Gram-negative bacteria (CRGNB) showing resistance to minocycline were included in the study. Molecular screening of β-lactamase and tetracycline resistance genes was done by the conventional polymerase chain reaction method. Minimum inhibitory concentration analysis was performed using the broth microdilution technique. Among 700 CRGNB, 15.29% (n = 107/700) were minocycline resistant by disk diffusion method. Genetic analysis demonstrated the presence of tetracycline-resistant genes in about one-third isolates, among which the tet(B) gene was present in 41.12% (n = 44/107). Upon broth microdilution analysis, the overall minimum inhibitory concentration for minocycline was raised, wherein 4.76% (n = 5/107) of our clinical Gram-negative isolates were inhibited at ≤8 mg/L and 15.23% (n = 28/107) were inhibited at ≤16 mg/L. Omadacycline was able to inhibit 13.08% (n = 14/107) of the minocycline-resistant isolates at ≤4 mg/L (susceptible breakpoint for Enterobacterales). Based on the cut-off value proposed, 15.09% (n = 16/107) isolates resistant to minocycline were inhibited by omadacycline. High prevalence of multidrug-resistant bugs entails judicious use of minocycline and omadacycline. The presence of tet genes coexisting with bla(NDM) and bla(OXA) in our bacterial isolates shows that the resistance pattern in Gram-negative bacilli is regularly evolving, and a fully functional surveillance program across the health care system is needed to prevent the emergence and spread of antimicrobial resistance.202540126171
892100.9998Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad. BACKGROUND: Recent emergence of high-level tigecycline resistance is mediated by tet(X) genes in Gram-negative bacteria, which undoubtedly constitutes a serious threat for public health worldwide. This study aims to identify tigecycline non-susceptible isolates and detect the presence of genes that are responsible for tigecycline resistance among local isolates in Iraq for the first time. METHODS: Thirteen clinical isolates of Klebsiella pneumonia, Acinetobacter baumannii and Pseudomonas aeruginosa tigecycline non-susceptible were investigated from blood, sputum and burns specimens. The susceptibility of different antibiotics was tested by the VITEK-2 system. To detect tigecycline resistance genes, PCR was employed. RESULTS: Strains studied in this work were extremely drug-resistant and they were resistant to most antibiotic classes that were studied. The plasmid-encoded tet(X), tet(X1), tet(X2), tet(X3), tet(X4), tet(X5), tet(M) and tet(O) genes were not detected in the 13 isolates. The results showed that there is a clear presence of tet(A) and tet(B) genes in tigecycline non-susceptible isolates. All 13 (100%) tigecycline non-susceptible K. pneumoniae, A. baumannii and P. aeruginosa isolates harbored the tet(B) gene. In contrast, 4 (30.77%) tigecycline non-susceptible P. aeruginosa isolates harbored the tet(A) gene and there was no tigecycline non-susceptible A. baumannii isolate harboring the tet(A) gene (0%), but one (7.69%) tigecycline non-susceptible K. pneumoniae isolate harbored the tet(A) gene. A phylogenetic tree, which is based on the nucleotide sequences of the tet(A) gene, showed that the sequence of the local isolate was 87% similar to the nucleotide sequences for all the isolates used for comparison from GenBank and the local isolate displayed genetic diversity. CONCLUSIONS: According to this study, tet(B) and tet(A) play an important role in the appearance of tigecycline non-susceptible Gram-negative isolates.202236207501
1622110.9998Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.202134943653
2302120.9998Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.202439031267
1032130.9998Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern.202032802720
2309140.9998Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.202439139624
2037150.9998Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.202438571400
1610160.9998Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BACKGROUND: The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. RESULTS: In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the bla(NDM-1) and bla(VIM-2) genes, respectively and were able to transmit imipenem resistance through conjugation. CONCLUSION: Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.202033256594
1949170.9998Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were bla(TEM) (76.09%), bla(CTX-M1) (71.74%), and bla(NDM) (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings.202337623228
868180.9998Antimicrobial susceptibility and genetic characteristics of multi-drug resistant Acinetobacter baumannii isolates in Northwest China. INTRODUCTION: In recent decades, widespread multi-drug resistant (MDR) bacteria have become a serious problem in healthcare facilities. METHODS: To systematically summarize and investigate the prevalence and genomic features of clinical MDR Acinetobacter baumannii (A. baumannii) clinical isolates recovered from the first hospital of Lanzhou University, we collected 50 MDR A. baumannii isolates isolated in the first quarter of 2022 and using whole-genome sequencing investigate the genotypic characteristics. RESULTS: All of these isolates were generally resistant to the common β-lactamase antibiotics. Resistance to cefoperazone-sulbactam varies greatly between different clones. The proportion of CC208 isolates resistant and mediated to cefoperazone-sulbactam is as high as 84.6%. There were no isolates resistant to tigecycline and colistin. The presence of bla(OXA - 23) (94.0%) and bla(OXA - 66) (98.0%) were the most frequent determinants for carbapenem resistance. Two main endemic clones were identified, one (ST469(oxf)) was predominantly circulating in ICUs and carried the same resistance genes, virulence genes and transposons, and the other clone (CC208) carried more resistance genes and had more widely disseminated. DISCUSSION: Our study showed that clinical MDR A. baumannii isolates circulating in our hospital exhibited highly similar genetic features. We should take timely and effective measures to control the further epidemic of these isolates.202438746749
1956190.9998Wounds of Companion Animals as a Habitat of Antibiotic-Resistant Bacteria That Are Potentially Harmful to Humans-Phenotypic, Proteomic and Molecular Detection. Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.202438542095