Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
229701.0000Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. Acinetobacter baumannii (A. baumannii) has developed several resistance mechanisms. The bacteria have been reported as origin of multiple outbreaks. This study aims to investigate the use of efflux pumps and quinolone resistance-associated genotypic mutations as mechanisms of resistance in A. baumannii isolates at a tertiary hospital. A total number of 103 A. baumannii isolates were investigated after identification and antimicrobial susceptibility testing by VITEK2 followed by PCR amplification of bla (OXA-51) . Conventional PCR amplification of the AdeABC efflux pump (adeB, adeS, and adeR) and quinolone (parC and gyrA) resistance genes were performed, followed by quantitative real-time PCR of AdeABC efflux pump genes. Phenotypic evaluation of efflux pump expression was performed by determining the difference between the MIC of tigecycline before and after exposure to an efflux pump inhibitor. The Sanger sequencing method was used to sequence the parC and gyrA amplicons. A phylogenetic tree was drawn using MEGA 4.0 to evaluate evolutionary relatedness of the strains. All the collected isolates were bla (OXA-51) -positive. High resistance to almost all the tested antibiotics was observed. Efflux pump was found in 75% of isolates as a mechanism of resistance. The study detected parC gene mutation in 60% and gyrA gene mutation in 85%, while 37% of isolates had mutations on both genes. A minimal evolutionary distance between the isolates was reported. The use of the AdeABC efflux pump system as an active mechanism of resistance combined with point mutation mainly in gyrA was shown to contribute to broaden the resistance spectrum of A. baumannii isolates.202134659419
229610.9999Multi-drug resistance profiles and the genetic features of Acinetobacter baumannii isolates from Bolivia. INTRODUCTION: Acinetobacter baumannii is opportunistic in debilitated hospitalised patients. Because information from some South American countries was previously lacking, this study examined the emergence of multi-resistant A. baumannii in three hospitals in Cochabamba, Bolivia, from 2008 to 2009. METHODOLOGY: Multiplex PCR was used to identify the main resistance genes in 15 multi-resistant A. baumannii isolates. RT-PCR was used to measure gene expression. The genetic environment of these genes was also analysed by PCR amplification and sequencing. Minimum inhibitory concentrations were determined for key antibiotics and some were determined in the presence of an efflux pump inhibitor, 1-(1-napthylmethyl) piperazine. RESULTS: Fourteen strains were found to be multi-resistant. Each strain was found to have the blaOXA-58 gene with the ISAba3-like element upstream, responsible for over-expression of the latter and subsequent carbapenem resistance. Similarly, ISAba1, upstream of the blaADC gene caused over-expression of the latter and cephalosporin resistance; mutations in the gyrA(Ser83 to Leu) and parC (Ser-80 to Phe) genes were commensurate with fluoroquinolone resistance. In addition, the adeA, adeB efflux genes were over-expressed. All 15 isolates were positive for at least two aminoglycoside resistance genes. CONCLUSIONS: This is one of the first reports analyzing the multi-drug resistance profile of A. baumannii strains isolated in Bolivia and shows that the over-expression of theblaOXA-58, blaADC and efflux genes together with aminoglycoside modifying enzymes and mutations in DNA topoisomerases are responsible for the multi-resistance of the bacteria and the subsequent difficulty in treating infections caused by them.201323592642
229120.9998Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Fluoroquinolones have been used for prophylaxis against infections in cancer patients but their impact on the resistance mechanisms still require further investigation. To elucidate mechanisms underlying ciprofloxacin (CIP) resistance in Gram-negative pathogens causing infections to cancer patients, 169 isolates were investigated. Broth microdilution assays showed high-level CIP resistance in 89.3% of the isolates. Target site mutations were analyzed using PCR and DNA sequencing in 15 selected isolates. Of them, all had gyrA mutations (codons 83 and 87) with parC mutations (codons 80 and 84) in 93.3%. All isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes and 56.8% of them were positive in this respect. Among PMQR genes, aac(6')-Ib-cr predominated (42.6%) while qnr genes were harbored by 32.5%. This comprised qnrS in 26.6% and qnrB in 6.5%. Clonality of the qnr-positive isolates using ERIC-PCR revealed that most of them were not clonal. CIP MIC reduction by CCCP, an efflux pump inhibitor, was studied and the results revealed that contribution of efflux activity was observed in 18.3% of the isolates. Furthermore, most fluoroquinolone resistance mechanisms were detected among Gram-negative isolates recovered from cancer patients. Target site mutations had the highest impact on CIP resistance as compared to PMQRs and efflux activity.201830115947
231630.9998Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
231740.9998Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. BACKGROUND: Acinetobacter baumannii (A. baumannii) is one of the most important bacteria causing nosocomial infections worldwide. Over the past few years, several strains of A. baumannii have shown antibiotic resistance, which may be due to the activity of efflux pumps. This study was aimed to detect AdeFG efflux pump genes and their contribution to antibiotic resistance in A. baumannii clinical isolates. METHODS: A total of 200 A. baumannii clinical isolates were collected from clinical specimens of ulcers, pus, sputum, and blood. All isolates were identified using standard biochemical tests. After identifying and cleaving the genome by boiling, PCR was performed on samples using specific primers. The antimicrobial susceptibility patterns were determined by disk diffusion, with and without CCCP efflux pump inhibitor were determined according to CLSI guidelines. RESULTS: We identified 60 clinical isolates of A. baumannii using biochemical differential tests. Identification of all A. baumannii isolates was confirmed by blaOXA-51-like PCR. According to the results of our study, 98.37% of A. baumannii isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. PCR results indicated that all 60 A. baumannii isolates contained the AdeF and 76.66% contained AdeG. CONCLUSION: the results of this study demonstrated that most of the A. baumannii isolates contained AdeF and AdeG efflux pump genes, and more than 98% of the isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. This reflected the significant contribution of efflux pumps to the development of resistance to these antibiotics.202032582800
598050.9998Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. The gyrA gene mutations associated with quinolone resistance were determined in 21 epidemiologically unrelated clinical isolates of Acinetobacter baumannii. Our studies highlight the conserved sequences in the quinolone resistance-determining region of the gyrA gene from A. baumannii and other bacteria. All 15 isolates for which the MIC of ciprofloxacin is > or = 4 micrograms/ml showed a change at Ser-83 to Leu. Six strains for which the MIC of ciprofloxacin is 1 microgram/ml did not show any change at Ser-83, although a strain for which the MIC of ciprofloxacin is 1 microgram/ml exhibited a change at Gly-81 to Val. Although it is possible that mutations in other locations of the gyrA gene, the gyrB gene, or in other genes may also contribute to the modulation of the MIC level, our results suggest that a gyrA mutation at Ser-83 is associated with quinolone resistance in A. baumannii.19957625818
206360.9998Nalidixic acid-a good marker of fluoroquinolone resistance mechanisms in Escherichia coli. The purpose of this study was to evaluate how ciprofloxacin, pefloxacin, and nalidixic acid disks perform in screening fluoroquinolone resistance mechanisms in 278 Escherichia coli isolates collected from a prospective clinical material. Antimicrobial susceptibility testing of ciprofloxacin, pefloxacin, and nalidixic acid was performed with the disk diffusion method. PCR-based and sequencing methods were used to detect chromosomal mutations in the gyrA and parC genes and the presence of plasmid-mediated qnr and aac(6')-1b-cr genes. In addition, whole-genome sequencing was used to confirm these results. Our results show that fluoroquinolone resistance mechanisms were discovered, even in ciprofloxacin-susceptible isolates, and plasmid-mediated low-level fluoroquinolone resistance is easily missed if only ciprofloxacin disk is used. E. coli strains with chromosomal gyrA and/or parC mutations were well detected with pefloxacin disk. However, nalidixic acid was a superior tool to detect and differentiate between low- (plasmid-mediated) and high-level (chromosomal mutations) fluoroquinolone resistance in E. coli. Thus, more clinical studies are needed to evaluate the clinical relevance of fluoroquinolone resistance mechanisms in enteric bacteria and pathogens that show potential but are not yet phenotypically fluoroquinolone-resistant. IMPORTANCE: We show in our clinical setting that fluoroquinolone resistance mechanisms are discovered, even among phenotypically fluoroquinolone-susceptible Escherichia coli isolates. When plasmid-mediated quinolone-resistance determinants are present, they are a potential risk for treatment failures due to accumulation of resistance mechanisms during the antimicrobial treatment. Therefore, when it is clinically relevant, fluoroquinolone resistance mechanisms in E. coli should be monitored more closely, and we also recommend testing nalidixic acid susceptibility.202540401973
231470.9997Imipenem resistance in aerobic gram-negative bacteria. A prospective study was undertaken to observe the emergence of resistance to imipenem, if any, among aerobic gram-negative bacteria. A total of 736 isolates were tested during 1994-95 and less than 1% of them were resistant to imipenem, whereas the next year ('95-'96) the rate increased to 11 of the 903 isolates tested. The resistant isolates during '94-'95 were all Stenotrophomonas maltophilia whereas the spectrum of resistant bacterial species increased in '95-'96 to include Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter calcoaceticus, Enterobacter cloacae, Proteus mirabilis and Morganella morganii with a tendency to an increase in the minimum inhibitory concentration (MIC) in the later part of the year. A majority (72%) of the resistant isolates were from patients with burns, and burn wounds were most frequently infected with such organisms. These data suggest that over a period of time aerobic gram-negative bacteria may develop resistance to imipenem and the pool of such bacteria increases with extensive use of the drug. Non-fermentative aerobic bacteria tend to develop resistance faster with widespread dissemination than Enterobacteriaceae. Hospital Burn Units are a potential source of development of such resistance.19989603633
228580.9997Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.200818720500
229090.9997Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. Therapeutic resistance towards most of the current treatment regime by Acinetobacter baumannii has reduced the prescribing antibiotic pattern and option is being re-shifted towards more toxic agents including aminoglycosides. The present investigation aimed at to study various mechanisms towards aminoglycoside non-susceptibility in clinical isolates of A. baumannii. The bacteria were subjected to genetic basis assessment for the presence of aminoglycoside modifying enzymes (AME), 16S rRNA methylase encoding genes and relative expression of AdeABC and AbeM efflux pumps in relation to their susceptibility to five aminoglycosides. When isolates were subjected to typing by repetitive extragenic palindromic (REP) PCR, isolates could be separated into thirteen definite clones. The majority of isolates (94%) were positive for AME encoding genes. Possession of ant(2')-Ia correlated with non-susceptibility towards gentamicin, amikacin, kanamycin, tobramycin; while, presence of aph(3')-VIa attributed to resistance towards amikacin, kanamycin; possession of aac(3')-Ia allied with non-susceptibility to amikacin, tobramycin and presence of aac(3')IIa correlated with kanamycin non-susceptibility. Presence of armA was detected in 34.4%, 34.2%, 29.2%, 40.3%, and 64.2% of isolates showing non-susceptibility to gentamicin, amikacin, kanamycin, tobramycin and netilmicin, respectively. No isolates were found to carry rmtB or rmtC. Amikacin non-susceptibility in comparison to other aminoglycosides correlated with over production of adeB. Overall, the results represented a definitive correlation between presence of AME encoding genes as well as armA and resistance of A. baumannii towards aminoglycosides. On the other hand, the up-regulation of AdeABC and AbeM systems was found to have only the partial role in development of aminoglycoside resistance.201727889248
5938100.9997Characterization of Mechanisms Lowering Susceptibility to Flumequine among Bacteria Isolated from Chilean Salmonid Farms. Despite their great importance for human therapy, quinolones are still used in Chilean salmon farming, with flumequine and oxolinic acid currently approved for use in this industry. The aim of this study was to improve our knowledge of the mechanisms conferring low susceptibility or resistance to quinolones among bacteria recovered from Chilean salmon farms. Sixty-five isolates exhibiting resistance, reduced susceptibility, or susceptibility to flumequine recovered from salmon farms were identified by their 16S rRNA genes, detecting a high predominance of species belonging to the Pseudomonas genus (52%). The minimum inhibitory concentrations (MIC) of flumequine in the absence and presence of the efflux pump inhibitor (EPI) Phe-Arg-β-naphthylamide and resistance patterns of isolates were determined by a microdilution broth and disk diffusion assays, respectively, observing MIC values ranging from 0.25 to >64 µg/mL and a high level of multi-resistance (96%), mostly showing resistance to florfenicol and oxytetracycline. Furthermore, mechanisms conferring low susceptibility to quinolones mediated by efflux pump activity, quinolone target mutations, or horizontally acquired resistance genes (qepA, oqxA, aac(6')-lb-cr, qnr) were investigated. Among isolates exhibiting resistance to flumequine (≥16 µg/mL), the occurrence of chromosomal mutations in target protein GyrA appears to be unusual (three out of 15), contrasting with the high incidence of mutations in GyrB (14 out of 17). Bacterial isolates showing resistance or reduced susceptibility to quinolones mediated by efflux pumps appear to be highly prevalent (49 isolates, 75%), thus suggesting a major role of intrinsic resistance mediated by active efflux.201931847389
1703110.9997Acinetobacter baumannii clinical isolates from outbreaks in Erbil hospitals after the COVID-19 pandemic. INTRODUCTION: Acinetobacter baumannii is endemic in hospital environments, and since the coronavirus disease 2019 (COVID-19) pandemic, multidrug-resistant A. baumannii has become more potent. This potential evolution is driven by the undetectable numbers of gene resistances it has acquired. We evaluated the antibiotic-resistance genes in isolates from patients in Erbil hospitals. METHODOLOGY: This is the first study to demonstrate the antimicrobial resistance epidemic in Erbil, Iraq. A total of 570 patients, including 100 COVID-19 patients were tested. Isolate identification, characterization, antibiotics susceptibility test, polymerase chain reaction (PCR) amplification of the antibiotic resistance genes in both bacterial chromosome and plasmid, 16S-23S rRNA gene intergenic spacer (ITS) sequencing using the Sanger DNA sequencing, and phylogenetic analysis were used in this study. RESULTS: Only 13% of A. baumannii isolates were from COVID-19 patients. All isolates were multi-drug resistant due because of 24 resistance genes located in both the bacterial chromosome or the plasmid. blaTEM gene was detected in the isolates; however, aadB was not detected in the isolated bacteria. New carbapenemase genes were identified by Sanger sequencing and resistance genes were acquired by plasmids. CONCLUSIONS: The study identified metabolic differences in the isolates; although all the strains used the coumarate pathway to survive. Several resistance genes were present in the isolates' plasmids and chromosome. There were no strong biofilm producers. The role of the plasmid in A. baumannii resistance development was described based on the results.202439499748
2294120.9997Antimicrobial Resistance of Clinical Klebsiella pneumoniae Isolates: Involvement of AcrAB and OqxAB Efflux Pumps. BACKGROUND: Over the last several decades, the AcrAB and OqxAB efflux pumps have been found to cause multidrug resistance (MDR) in various bacteria, most notably Klebsiella pneumoniae. Antibiotic resistance surges with increased expression of the acrAB and oqxAB efflux pumps. METHODS: In accordance with CLSI guidelines, a disk diffusion test was carried out using 50 K. pneumoniae isolates obtained from various clinical samples. CT was computed in treated samples and compared to a susceptible ciprofloxacin strain (A111). The final finding is presented as the fold change in the target gene's expression in treated samples relative to a control sample (A111), normalized to a reference gene. As ΔΔCT = 0 and 2 to the power of 0 = 1, relative gene expression for reference samples is often set to 1 Results: The highest rates of resistance were recognized with cefotaxime (100%), cefuroxime (100%), cefepime (100%), levofloxacin (98%), trimethoprimsulfamethoxazole (80%), and gentamicin (72%), whereas imipenem (34%) had the lowest rates. Overexpression of acrA and acrB, oqxA and oqxB, regulators marA, soxS, and rarA were greater in ciprofloxacin-resistant isolates compared to the reference strain (strain A111). There was also a moderate connection between ciprofloxacin MIC and acrAB gene expression and a moderate connection between ciprofloxacin MIC and oqxAB gene expression. CONCLUSION: This work provides a deeper knowledge of the role of efflux pump genes, particularly acrAB and oqxAB, as well as transcriptional regulators marA, soxS, and rarA, in bacterial resistance to ciprofloxacin.202436999690
5986130.9997Transferable fluoroquinolone resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolated from hemocultures. BACKGROUND: The main mechanisms causing high-level resistance to fluoroquinolones (FQ) are encoded chromosomally; that includes mutations in genes coding DNA-gyrase, but overexpression of efflux pumps contributes to increased minimum inhibitory concentration (MIC) of FQ as well. However, genes responsible for FQ-resistance may be harboured in transferable/conjugative plasmids. For some time, there was an assumption that resistance to FQ cannot be transferable in conjugation due to their synthetic origin, until 1998, when plasmid-mediated resistance transmission in Klebsiella pneumoniae was proved. We aimed to detect the occurrence of transferable FQ-resistance among Gram- negative bacteria isolated from patients in Czech and Slovak hospitals. METHODS: In this study, we tested 236 clinical isolates of Gram-negative bacteria for transferable resistance. Among relevant isolates we performed PCR detection of transferable fluoroquinolone genes (qnr). RESULTS: We have observed transfer of determinants of cephalosporin-resistance, aminoglycoside resistance as well as FQ-resistance (in 10 cases; 4.24%) not only intra-species but inter-species too. The presence of qnr gene was detected in two isolates of forty tested (5%). We have also observed that determinants of cephalosporin-resistance and aminoglycoside-resistance were linked to those of FQ-resistance and were transferred en block in conjugation. CONCLUSION: We have proved that resistance to fluoroquinolones can be transferred horizontally via conjugation among Gram-negative bacteria of different species and is associated with resistance to other antibiotics.201424844110
2080140.9997Distribution of the antiseptic-resistance genes qacE and qacE delta 1 in gram-negative bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1 was studied in a large number of Gram-negative bacteria by a method that included the polymerase chain reaction (PCR). A total of 117 strains of Gram-negative bacteria, isolated from clinical or environmental sources, was used in this analysis. We demonstrated the presence of these genes in 48 of 78 strains of Pseudomonas, in 20 of 26 strains of Vibrio, and in four of 13 strains of other species. These results indicate that the antiseptic-resistance genes are present in a broad range of species of Gram-negative bacteria.19989503610
2327150.9997Identification of Quinolone and Colistin Resistance Genes in Escherichia Coli Strains Isolated from Mucosal Samples of Patients with Colorectal Cancer and Healthy Subjects. INTRODUCTION: Antibiotic resistance and extensive use of antibiotics are amongst the major causes of failure in antibiotic treatment. The purpose of this study was to investigate antibiotic resistance patterns and to identify resistance genes of quinolones and colistin in Escherichia coli. There are a very few patents on E. coli isolated from colorectal cancer. So, this study demonstrates that some bacteria resistant to ciprofloxacin have not resistance genes.Moreover, new patterns for E. coli are presented for isolates of patients with colorectal cancer. MATERIALS AND METHODS: Of the three healthy people, inflammatory bowel diseases (IBD) patients and colorectal cancer patients, 40 E. coli strains isolated after confirmation by biochemical and molecular methods. The susceptibility of isolates to antibiotics was investigated using disk diffusion test. After deoxyribonucleic acid (DNA) extraction, polymerase chain reaction (PCR) was used to identify genes encoding resistance to ciprofloxacin (qnr A, qnr B) and colistin (mcr-1). RESULTS: The results showed that E. coli isolates from colorectal cancer patients had the highest resistance to piperacillin (67.5%), ceftazidime (47.5%), and cefepime (42.5%). Also, E. coli strains isolated from IBD patients showed resistance to antibiotic ceftazidime 13%. More than 95% of E. coli strains isolated from healthy people were susceptible to antibiotics. Based on the results, 18 (15%) E. coli strains showed resistance to ciprofloxacin. The qnr A gene was detected in 61.11% isolates; however, qnr B was detected in 9 (50%) isolates. Isolates resistant to colistin were not observed. CONCLUSION: These findings indicate increased resistance of E. coli to ciprofloxacin in comparison with prior studies. Further research in this field will increase our knowledge and more effective exposure to the antibiotic resistance of the pathogenic microorganisms.202031198116
2295160.9997The drug resistance profile of Mycobacterium abscessus group strains from Korea. BACKGROUND: Bacteria of the Mycobacterium abscessus group are the second most common pathogens responsible for lung disease caused by nontuberculous mycobacteria in Korea. There is still a lack of studies investigating the genetic mechanisms involved in M. abscessus resistance to antibiotics other than clarithromycin. This study investigated the characteristics of drug resistance exhibited by M. abscessus clinical isolates from Korea. METHODS: We performed drug susceptibility testing for a total of 404 M. abscessus clinical strains. Subspecies were differentiated by molecular biological methods and examined for mutations in drug resistance-related genes. RESULTS: Of the 404 strains examined, 202 (50.00%), 199 (49.26%), and 3 (0.74%) strains were identified as M. abscessus, M. massiliense, and M. bolletii, respectively. Of the 152 clarithromycin-resistant strains, 6 possessed rrl mutations, while 4 of the 30 amikacin-resistant strains contained rrs mutations, and 5 of the 114 quinolone-resistant strains had gyr mutations. All mutant strains had high minimal inhibitory concentration values for the antibiotics. CONCLUSIONS: Our results showed the distribution of the strains with mutations in drug resistance-related genes was low in the M. abscessus group. Furthermore, we performed drug susceptibility testing and sequence analyses to determine the characteristics of these genes in the M. abscessus group.201424422193
2277170.9997Impact of marbofloxacin administration on the emergence of marbofloxacin-resistant E. coli in faecal flora of goats and elucidation of molecular basis of resistance. OBJECTIVES: The level of resistance immediately prior to slaughter in food-producing animals is of great public health significance because of likely transmission of resistant bacteria via the food chain. METHODS: Marbofloxacin was administered to goats at the dose of 2 mg/kg body weight by intramuscular route for 5 days. Faecal Escherichia coli population was monitored and examined for bacteriological procedures. DNA sequencing of gyrA and parC genes was performed to identify mutations at quinolone-resistance determining region, and interaction between marbofloxacin and GyrA was studied by in silico docking. E. coli isolates were screened for plasmid-mediated quinolone resistance genes qnrA, qnrB, qnrS, aac(6')Ib-cr, qepA, oqxA and oqxB. Efflux pump-mediated resistance was evaluated by ethidium bromide assay, reduction in minimum inhibitory concentration (MIC) values in the presence of efflux pump inhibitors and relative expression of AcrAB-TolC efflux pump. RESULTS: During the treatment period, emergence of marbofloxacin-resistant E. coli strains was observed in gut flora. Quinolone resistance determining regions (QRDRs) in gyrA identified amino acid codon mutations Ser83Leu and Asp87Asn, and Ser80Ile in parC. Docking analysis implied that marbofloxacin could not form strong complexes with mutated DNA-gyrase. A high prevalnce of PMQR genes, especially qnrS, was observed along with overexpression of AcrAB-TolC efflux pump. CONCLUSIONS: The study highlighted the high prevalence of transferable mechanisms of quinolone resistance and over expression of efflux pumps in marbofloxacin-resistant E. coli isolates apart from classic QRDR mutations. The present study recommends to consider the period of dominance of resistant commensals, being excreted by animals during the antimicrobial treatments, while formulating the withdrawal period for drugs, especially in food-producing animals.202032302733
2293180.9997Mechanisms of Resistance in Clinical Isolates of Enterobacter cloacae that Are Less Susceptible to Cefepime than to Ceftazidime. Thirty-two Enterobacter cloacae strains that are less susceptible to cefepime than to ceftazidime were collected. This unique phenotype of 8 strains was confirmed using the agar dilution method. OXA1, OXA10, OXA31 and OXA35 were detected in 3, 2, 3, and 2 strains, respectively, whereas all strains were negative for PSE-1 genes. OXA genes were also identified in the plasmid DNA of 5 strains, but only 2 strains were positive in a conjugation experiment. The acrA, acrB and tolC genes were identified in 4, 4 and 6 strains, respectively. Decreased expression of the acrA mRNA and overexpression of the acrB and tolC mRNAs were observed using real-time RT-PCR. Most of the bacteria (n=7) stably expressed the marA gene, which is a regulatory gene in the AcrAB-TolC multidrug efflux system, whereas all strains were negative for ramA. The acrA, acrB, tolC, acrR and marA genes were similar to the genes in reference strains in GenBank, with nucleotide homologies of 96%, 98%, 98%, 98% and 100%, respectively. In conclusion, the mechanism of resistance of Enterobacter cloacae with less susceptibility to cefepime than to ceftazidime is associated with the overexpression of AcrAB-TolC and the production of OXA1, XA10, OXA31 and OXA35.201829970440
2331190.9997Bacteriological and molecular study of fosfomycin resistance in uropathogenic Escherichia coli. The identification of genes associated with resistance has the potential to facilitate the development of novel diagnostic tests and treatment methods. The objective of this study was to examine the antibiotic resistance and Fosfomycin resistance genes in uropathogenic Escherichia coli (UPEC) in patients in Baghdad, Iraq. After analyzing 250 urine samples using various identification methods, including the examination of morphological characteristics, biochemical tests, and genetic detection, it was determined that E. coli was the most common bacteria present, accounting for 63.6% of the samples. Antibiotic susceptibility testing showed a significant prevalence of resistance to various antibiotics, with 99.3% of E. coli isolates exhibiting multiple drug resistance (MDR). Fosfomycin showed antibacterial properties against UPEC. The minimum inhibitory concentration (MIC) ranged from 512 to 1024 μg/mL, while the minimum bactericidal concentration (MBC) was 2048 μg/mL. In the time-kill assay, fosfomycin was effective against fosfomycin-resistant isolates within 8-12 h. The genetic determinants associated with fosfomycin resistance were examined through the utilization of polymerase chain reaction (PCR). The findings indicated that the genes murA, glpT, and cyaA were detected in all the isolates when genomic DNA was used as a template. However, all the tests yielded negative results when plasmid was used as a template. The genes fosA3 and fosA4 were detected in 8.6% and 5% of the isolates when genomic DNA was used as a template. When plasmid was used as a template, the genes fosA3 and fosA4 were found in 5.7% and 2.9% of the isolates, respectively. In conclusion, there is an increasing problem with antibiotic resistance in UPEC, with elevated rates of resistance to several antibiotics. The study also offers novel insights into the genetic foundation of fosfomycin resistance in UPEC.202438367167