Expression of norA, norB and norC efflux pump genes mediating fluoroquinolones resistance in MRSA isolates. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
228701.0000Expression of norA, norB and norC efflux pump genes mediating fluoroquinolones resistance in MRSA isolates. INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones.202438635612
228610.9999Association of Antibacterial Susceptibility Profile with the Prevalence of Genes Encoding Efflux Proteins in the Bangladeshi Clinical Isolates of Staphylococcus aureus. Expelling antibiotic molecules out of the cell wall through multiple efflux pumps is one of the potential mechanisms of developing resistance against a wide number of antibiotics in Staphylococcus aureus. The aim of this study was to investigate the association between the antibiotic susceptibility profile and the prevalence of different efflux pump genes i.e., norA, norB, norC, mepA, sepA, mdeA, qacA/B, and smr in the clinical isolates of S. aureus. Sixty clinical isolates were collected from a tertiary level hospital in Bangladesh. The disc diffusion method using ten antibiotics of different classes was used to discern the susceptibility profile. polymerase chain reaction (PCR) was employed to observe the resistance patterns and to detect the presence of plasmid and chromosomal encoded genes. Among the clinical isolates, 60% (36 out of 60) of the samples were Methicillin-resistant Staphylococcus aureus (MRSA), whereas 55% (33 out of 60) of the bacterial samples were found to be multi-drug resistant. The bacteria showed higher resistance to vancomycin (73.33%), followed by ciprofloxacin (60%), cefixime (53.33%), azithromycin (43.33%), and amoxicillin (31.67%). The prevalence of the chromosomally-encoded efflux genes norA (91.67%), norB (90%), norC (93.33%), mepA (93.33%), sepA (98.33%), and mdeA (93.33%) were extremely high with a minor portion of them carrying the plasmid-encoded genes qacA/B (20%) and smr (8.33%). Several genetic combinations of efflux pump genes were revealed, among which norA + norB + norC + mepA + sepA + mdeA was the most widely distributed combination among MRSA and MSSA bacteria that conferred resistance against ciprofloxacin and probably vancomycin. Based on the present study, it is evident that the presence of multiple efflux genes potentiated the drug extrusion activity and may play a pivotal role in the development of multidrug resistance in S. aureus.202336830216
228520.9997Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.200818720500
237530.9997Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. INTRODUCTION: A high rate of infections with methicillin-resistant Staphylococcus aureus (MRSA) has been documented, in both hospital- (HA-MRSA) and community-acquired (CA-MRSA) diseases in Jordan. Erythromycin and clindamycin are considered treatments of choice. However, resistance to erythromycin with false susceptibility to clindamycin in vitro may lead to therapeutic failure. Hence, it is mandatory to study the prevalence of inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB) antibiotics conferred by erm genes in those bacteria. METHODOLOGY: S. aureus isolates were identified morphologically and biochemically, and MRSA were appraised using standard procedures. Induction in resistance to MLSB antibiotics among MRSA isolates was detected phenotypically using the D-test, and the presence of erm genes was revealed by polymerase chain reaction (PCR). RESULTS: Of 126 collected Staphylococcus isolates, 71 (56.3%) isolates were S. aureus, of which 55 (77.5%) were MRSA. A total of 43 (78.2%) MRSA-discordant isolates were resistant to erythromycin, of which 33 (76.7%) exhibited the iMLSB (D-test positive), 2 (4.7%) the MSB (D-test negative), and 8 (18.6%) the constitutive resistant (cMLSB) phenotypes. Induction of clindamycin resistance was 1.6 times greater in CA-MRSA than in HA-MRSA. Furthermore, ermA and ermC were significantly prevalent in HA-MRSA and CA-MRSA, respectively. CONCLUSIONS: Continuous surveillance of the MLSB resistance is important and required before the prescription of clindamycin to treat MRSA infections.201728459227
235240.9997Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866
231650.9997Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
228860.9997Resistance of Stenotrophomonas maltophilia to Fluoroquinolones: Prevalence in a University Hospital and Possible Mechanisms. OBJECTIVE: The purpose of this study was to investigate the clinical distribution and genotyping of Stenotrophomonas maltophilia, its resistance to antimicrobial agents, and the possible mechanisms of this drug resistance. METHODS: S. maltophilia isolates were collected from clinical specimens in a university hospital in Northwestern China during the period between 2010 and 2012, and were identified to the species level with a fully automated microbiological system. Antimicrobial susceptibility testing was performed for S. maltophilia with the Kirby-Bauer disc diffusion method. The minimal inhibitory concentrations (MICs) of norfloxacin, ofloxacin, chloramphenicol, minocycline, ceftazidime, levofloxacin and ciprofloxacin against S. maltophilia were assessed using the agar dilution method, and changes in the MIC of norfloxacin, ciprofloxacin and ofloxacin were observed after the addition of reserpine, an efflux pump inhibitor. Fluoroquinolone resistance genes were detected in S. maltophilia using a polymerase chain reaction (PCR) assay, and the expression of efflux pump smeD and smeF genes was determined using a quantitative fluorescent (QF)-PCR assay. Pulsed-field gel electrophoresis (PFGE) was employed to genotype identified S. maltophilia isolates. RESULTS: A total of 426 S. maltophilia strains were isolated from the university hospital from 2010 to 2012, consisting of 10.1% of total non-fermentative bacteria. The prevalence of norfloxacin, ciprofloxacin and ofloxacin resistance was 32.4%, 21.9% and 13.2% in the 114 S. maltophilia isolates collected from 2012, respectively. Following reserpine treatment, 19 S. maltophilia isolates positive for efflux pump were identified, and high expression of smeD and smeF genes was detected in two resistant isolates. gyrA, parC, smeD, smeE and smeF genes were detected in all 114 S. maltophilia isolates, while smqnr gene was found in 25.4% of total isolates. Glu-Lys mutation (GAA-AAA) was detected at the 151th amino acid of the gyrA gene, while Gly-Arg mutation (GGC-CGC) was found at the 37th amino acid of the parC gene. However, no significant difference was observed in the prevalence of gyrA or parC mutation between fluoroquinolone-resistant and -susceptible isolates (p> 0.05). The smqnr gene showed 92% to 99% heterogenicity among the 14 S. maltophilia clinical isolates. PFGE of 29 smqnr gene-positive S. maltophilia clinical isolates revealed 25 PFGE genotypes and 28 subgenotypes. CONCLUSIONS: Monitoring the clinical distribution and antimicrobial resistance of S. maltophilia is of great significance for the clinical therapy of bacterial infections. Reserpine is effective to inhibit the active efflux of norfloxacin, ciprofloxacin and ofloxacin on S. maltophilia and reduce MIC of fluoroquinolones against the bacteria. The expression of efflux pump smeD and smeF genes correlates with the resistance of S. maltophilia to fluoroquinolones.201525985315
229170.9997Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Fluoroquinolones have been used for prophylaxis against infections in cancer patients but their impact on the resistance mechanisms still require further investigation. To elucidate mechanisms underlying ciprofloxacin (CIP) resistance in Gram-negative pathogens causing infections to cancer patients, 169 isolates were investigated. Broth microdilution assays showed high-level CIP resistance in 89.3% of the isolates. Target site mutations were analyzed using PCR and DNA sequencing in 15 selected isolates. Of them, all had gyrA mutations (codons 83 and 87) with parC mutations (codons 80 and 84) in 93.3%. All isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes and 56.8% of them were positive in this respect. Among PMQR genes, aac(6')-Ib-cr predominated (42.6%) while qnr genes were harbored by 32.5%. This comprised qnrS in 26.6% and qnrB in 6.5%. Clonality of the qnr-positive isolates using ERIC-PCR revealed that most of them were not clonal. CIP MIC reduction by CCCP, an efflux pump inhibitor, was studied and the results revealed that contribution of efflux activity was observed in 18.3% of the isolates. Furthermore, most fluoroquinolone resistance mechanisms were detected among Gram-negative isolates recovered from cancer patients. Target site mutations had the highest impact on CIP resistance as compared to PMQRs and efflux activity.201830115947
235980.9996Virulence Factor Genes and Antimicrobial Susceptibility of Staphylococcus aureus Strains Isolated from Blood and Chronic Wounds. Staphylococcus aureus is one of the predominant bacteria isolated from skin and soft tissue infections and a common cause of bloodstream infections. The aim of this study was to compare the rate of resistance to various antimicrobial agents and virulence patterns in a total of 200 S. aureus strains isolated from patients with bacteremia and chronic wounds. Disk diffusion assay and in the case of vancomycin and teicoplanin-microdilution assay, were performed to study the antimicrobial susceptibility of the isolates. The prevalence of genes encoding six enterotoxins, two exfoliative toxins, the Panton-Valentine leukocidin and the toxic shock syndrome toxin was determined by PCR. Of the 100 blood strains tested, the highest percentage (85.0%, 31.0%, and 29.0%) were resistant to benzylpenicillin, erythromycin and clindamycin, respectively. Out of the 100 chronic wound strains, the highest percentage (86.0%, 32.0%, 31.0%, 31.0%, 30.0%, and 29.0%) were confirmed as resistant to benzylpenicillin, tobramycin, amikacin, norfloxacin, erythromycin, and clindamycin, respectively. A significantly higher prevalence of resistance to amikacin, gentamicin, and tobramycin was noted in strains obtained from chronic wounds. Moreover, a significant difference in the distribution of sea and sei genes was found. These genes were detected in 6.0%, 46.0% of blood strains and in 19.0%, and 61.0% of wound strains, respectively. Our results suggest that S. aureus strains obtained from chronic wounds seem to be more often resistant to antibiotics and harbor more virulence genes compared to strains isolated from blood.202134357963
235490.9996Resistance profiles of Staphylococcus aureus isolates against frequently used antibiotics at private sector laboratories in Jordan. BACKGROUND AND OBJECTIVES: Staphylococcus aureus (S. aureus) is one of the most important pathogens, responsible for a range of infections. This study aimed to assess resistance patterns in S. aureus isolates obtained from certain private-sector laboratories against commonly used antimicrobial agents. MATERIALS AND METHODS: The process involved collecting various samples from several private laboratories and then identifying S. aureus isolates using biochemical characterization. The antibiotic susceptibility of these isolates was determined by disc diffusion method. Furthermore, Rt-PCR was employed to identify two genes namely the methicillin/oxacillin resistance genes (mecA), and (SCCmec). RESULTS: The findings of the current study exhibited that females constituted a larger proportion of the participants (59.1%) compared to males (40.9%), with a mean participant age of 40.82 years. Gram-positive bacteria were more prevalent (71.3%) than Gram-negative bacteria (18.3%), with S. aureus being the most frequent isolate (60.9%). Urine samples represented the highest collected sample type (47.8%). Out of the 115 bacterial isolates, 85.2% exhibited multidrug resistance to antibiotics such as cefazolin, gentamicin, vancomycin, and ceftazidime. Clindamycin was the most effective antibiotic, with a sensitivity rate of 62.9%, followed by teicoplanin and meropenem, each with a sensitivity rate of 52.9%. Methicillin-resistant Staphylococcus aureus (MRSA) strains were susceptabile to vancomycin and teicoplanin. The methicillin/oxacillin resistant isolates showed significant association with mecA and SCCA genes. CONCLUSION: This study highlighted the multi-drug resistance in S. aureus isolates, stressing the need for stringent antibiotic stewardship, continuous surveillance, and further research into alternative treatments, including novel antibiotics and combination therapy, to combat resistant strains.202540337673
2349100.9996DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene.202439724880
2295110.9996The drug resistance profile of Mycobacterium abscessus group strains from Korea. BACKGROUND: Bacteria of the Mycobacterium abscessus group are the second most common pathogens responsible for lung disease caused by nontuberculous mycobacteria in Korea. There is still a lack of studies investigating the genetic mechanisms involved in M. abscessus resistance to antibiotics other than clarithromycin. This study investigated the characteristics of drug resistance exhibited by M. abscessus clinical isolates from Korea. METHODS: We performed drug susceptibility testing for a total of 404 M. abscessus clinical strains. Subspecies were differentiated by molecular biological methods and examined for mutations in drug resistance-related genes. RESULTS: Of the 404 strains examined, 202 (50.00%), 199 (49.26%), and 3 (0.74%) strains were identified as M. abscessus, M. massiliense, and M. bolletii, respectively. Of the 152 clarithromycin-resistant strains, 6 possessed rrl mutations, while 4 of the 30 amikacin-resistant strains contained rrs mutations, and 5 of the 114 quinolone-resistant strains had gyr mutations. All mutant strains had high minimal inhibitory concentration values for the antibiotics. CONCLUSIONS: Our results showed the distribution of the strains with mutations in drug resistance-related genes was low in the M. abscessus group. Furthermore, we performed drug susceptibility testing and sequence analyses to determine the characteristics of these genes in the M. abscessus group.201424422193
2362120.9996Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou. AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.202438638249
2317130.9996Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. BACKGROUND: Acinetobacter baumannii (A. baumannii) is one of the most important bacteria causing nosocomial infections worldwide. Over the past few years, several strains of A. baumannii have shown antibiotic resistance, which may be due to the activity of efflux pumps. This study was aimed to detect AdeFG efflux pump genes and their contribution to antibiotic resistance in A. baumannii clinical isolates. METHODS: A total of 200 A. baumannii clinical isolates were collected from clinical specimens of ulcers, pus, sputum, and blood. All isolates were identified using standard biochemical tests. After identifying and cleaving the genome by boiling, PCR was performed on samples using specific primers. The antimicrobial susceptibility patterns were determined by disk diffusion, with and without CCCP efflux pump inhibitor were determined according to CLSI guidelines. RESULTS: We identified 60 clinical isolates of A. baumannii using biochemical differential tests. Identification of all A. baumannii isolates was confirmed by blaOXA-51-like PCR. According to the results of our study, 98.37% of A. baumannii isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. PCR results indicated that all 60 A. baumannii isolates contained the AdeF and 76.66% contained AdeG. CONCLUSION: the results of this study demonstrated that most of the A. baumannii isolates contained AdeF and AdeG efflux pump genes, and more than 98% of the isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. This reflected the significant contribution of efflux pumps to the development of resistance to these antibiotics.202032582800
2353140.9996Contribution of icaADBC genes in biofilm production ability of Staphylococcus aureus clinical isolates collected from hospitalized patients at a burn center in North of Iran. INTRODUCTION: The pathogenicity of Staphylococcus aureus is significantly attributed to its capacity to produce biofilms, which bolster bacterial resistance against antibiotics and host immune responses. This study aimed to explore the involvement of icaABCD genes in biofilm formation ability of S. aureus clinical isolates. MATERIALS AND METHODS: One hundred clinical S. aureus isolates were collected from hospitalized patients at a burn center in North of Iran. The isolates were identified using standard biochemical tests and confirmed by the presence of the nuc gene. Antibiotic susceptibility profiles were determined through the disk agar diffusion method. Biofilm formation capacity was determined using microtiter plate assay. PCR test was conducted to detect the presence of icaABCD genes. RESULTS: Penicillin exhibited the highest resistance rate (94%), while vancomycin was most effective antibiotic with 6% resistance. Besides, 32% of the isolates demonstrated as multidrug resistant (MDR) and 29% were Methicillin-resistant S. aureus (MRSA). Notably, 89% of the isolates were identified as biofilm produces, while 54 (60.67%), 28 (31.46%), and 7 (7.86%) isolates exhibited strong, moderate, and weakly biofilm production ability, respectively. PCR results revealed a prevalence of 90%, 92%, 92%, and 94% for the icaA, icaB, icaC, and icaD genes, respectively. Intriguingly, the MDR isolates exhibited a 100% prevalence of these genes. Similarly, 96.55%, 89.65%, 89.65% and 96.55% of the MRSA isolates were carrying the icaA, icaB, icaC, and icaD genes, respectively. CONCLUSION: This study revealed a noteworthy prevalence of biofilm-producing strains of S. aureus. High prevalence of icaADBC genes as well as highlighted capacity of the biofilm formation in MRSA and MDR strains exhibited a potential correlation between biofilm and antibiotic resistance patterns. Given the enhanced resilience of bacteria within biofilms against antibiotics, addressing biofilm production is imperative alongside antibiotic treatments for effective control and eradication of infections.202540382552
2363150.9996Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected.202337840716
2348160.9996Characterization of Multidrug-Resistant Staphylococcus aureus Isolates and Comparison of Methods of Susceptibility to Vancomycin. S. aureus are among the main bacteria causing problems related to multidrug resistance in nosocomial infections. Therefore, it is necessary to carry out a reliable and rapid diagnosis for the identification of the bacteria and characterization of its susceptibility profile, especially vancomycin, which is an alternative treatment against multidrug-resistant (MDR) S. aureus. Thus, the goal of this study was to characterize isolates of S. aureus regarding the resistance and virulence and to check the susceptibility to vancomycin, through different methods, for comparative purposes. Seventeen antimicrobials were tested to assess the susceptibility profile. It was evaluated the presence of identification (nuc), resistance (mecA and blaZ), biofilm (icaA and icaD) and siderophore (sfaD and sbnD) genes. The susceptibility to vancomycin was evaluated by Minimum Inhibitory Concentration (MIC) by broth microdilution (BMD), E-test, commercial panel (Kit), and Phoenix equipment. Most S. aureus (93,33%) was classified as MDR. These isolates were 100% positive for nuc, mecA, icaA, icaD, and sfaD genes; 96.67% for sbnD and 33.33% for blaZ. In relation to BMD, all methods correctly classified the susceptibility of the isolates; however, regarding the exact MIC value for vancomycin, Phoenix showed agreement of 63.33%, E-test (33.33%) and Kit (26.66%). In conclusion, most of S. aureus was considered MDR. Also, they presented resistance, biofilm production, and siderophores genes, showing the pathogenic potential of these bacteria. Besides, the Phoenix test was considered the most effective, as it presents advantages, such as identification of the microorganism and a greater number of antimicrobials tested at a time.202236308600
2297170.9996Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. Acinetobacter baumannii (A. baumannii) has developed several resistance mechanisms. The bacteria have been reported as origin of multiple outbreaks. This study aims to investigate the use of efflux pumps and quinolone resistance-associated genotypic mutations as mechanisms of resistance in A. baumannii isolates at a tertiary hospital. A total number of 103 A. baumannii isolates were investigated after identification and antimicrobial susceptibility testing by VITEK2 followed by PCR amplification of bla (OXA-51) . Conventional PCR amplification of the AdeABC efflux pump (adeB, adeS, and adeR) and quinolone (parC and gyrA) resistance genes were performed, followed by quantitative real-time PCR of AdeABC efflux pump genes. Phenotypic evaluation of efflux pump expression was performed by determining the difference between the MIC of tigecycline before and after exposure to an efflux pump inhibitor. The Sanger sequencing method was used to sequence the parC and gyrA amplicons. A phylogenetic tree was drawn using MEGA 4.0 to evaluate evolutionary relatedness of the strains. All the collected isolates were bla (OXA-51) -positive. High resistance to almost all the tested antibiotics was observed. Efflux pump was found in 75% of isolates as a mechanism of resistance. The study detected parC gene mutation in 60% and gyrA gene mutation in 85%, while 37% of isolates had mutations on both genes. A minimal evolutionary distance between the isolates was reported. The use of the AdeABC efflux pump system as an active mechanism of resistance combined with point mutation mainly in gyrA was shown to contribute to broaden the resistance spectrum of A. baumannii isolates.202134659419
5941180.9996Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy.201121081549
2160190.9996Detection of AdeAB, TetA, and TetB efflux pump genes in clinical isolates of tetracycline-resistant Acinetobacter baumannii from patients of Suez Canal University Hospitals. BACKGROUND: Acinetobacter baumannii is an opportunistic bacteria associated primarily with hospital-acquired infections. Its tendency to acquire or donate resistance genes to neighboring bacteria is a major concern. Tetracyclines have shown promise in treating A. baumannii infections, but tetracycline resistance is growing globally in A. baumannii isolates. OBJECTIVES: The study aimed to study (1) the prevalence of multidrug-resistant (MDR) A. baumannii infections at Suez Canal University Hospitals, (2) the distribution of efflux pump genes AdeA &B, TetA, and TetB, and (3) the effect of efflux pump inhibitor (CCCP) on tetracycline-resistant isolates. METHODS: Clinical samples (457) were collected (blood, urine, sputum, ETA, pus, and pleural fluid), followed by A. baumannii isolation and identification, PCR detection of efflux pump genes, and detection of tetracycline susceptibility and its MIC before and after treatment with the efflux pump inhibitor (CCCP). RESULTS: A total of 31 A. baumannii isolates were recovered (6.78%). The highest rate of isolation was from the ICU (48.3%) from the ET aspirate samples (48.3%). The efflux system AdeA and TetB genes were distributed in 100% of isolates, whereas AdeB was found in 93.5% of isolates and the TetA gene in 87.1% of isolates. All A. baumannii isolates were MDR showing resistance to three or more classes of antibiotics. 45% of the isolates showed a 4-fold reduction of MIC and 12.9% showed a 2-fold reduction in the MIC. CONCLUSIONS: Efflux pump is an important mechanism for tetracycline resistance among A. baumannii isolates.202539905304