Aircraft lavatory wastewater surveillance for movement of antimicrobial resistance genes: a proof-of-concept study. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
227301.0000Aircraft lavatory wastewater surveillance for movement of antimicrobial resistance genes: a proof-of-concept study. Long-haul flight aircraft wastewater may serve as a representative microbial footprint, often of mixed country origin, offering valuable insight into the movement of pathogens and antimicrobial resistance (AMR) on a global scale. Herein, we present a proof-of-concept for aircraft-based surveillance of AMR by investigating lavatory wastewater samples from 44 repatriation flights to Australia departing from nine countries. Profiles of pathogens including ESKAPE pathogens (Salmonella spp., Mycobacterium spp., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) and antibiotic resistance genes (ARGs) (aph(3')-IIIa, bla(NDM-1), bla(CTX_M-1), bla(KPC), ermB, qnrS, sul1, tetM, and vanA) were investigated along with traditional fecal indicator bacteria (Escherichia coli and Enterococcus spp.) and fecal/urine marker genes (Bacteroides HF183, Carjivirus, human polyomavirus, and a cryptic plasmid pBI143) using quantitative PCR (qPCR). Two fecal indicator bacteria (FIB) and four human fecal/urine marker genes were detected in all aircraft wastewater samples. Detection rates for ESKAPE pathogens ranged from 6.8% (S. aureus) to 84.1% (K. pneumoniae). Of all ARG targets, aph(3')-IIIa, ermB, qnrS, sul1, and tetM were detected in all wastewater samples, whereas bla(KPC) and vanA were not detected in any of the samples. Results reflected geographic differences in ARG abundance originating from departure countries/continents and suggested a potential risk of importing ARGs that might be rare in local wastewater systems. The loss of nucleic acid targets was less than 10% over a 24 h incubation in the presence of disinfectants, suggesting that nucleic acids are resilient enough to persist in aircraft wastewater over the maximum duration of a flight.IMPORTANCEIn the context of international connectedness, aircraft-based wastewater surveillance should be viewed as a beyond-national tool to enhance global AMR management and foster international cooperation.202540434126
258310.9995From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain. Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes (ARGs) and characterizes the microbial communities' composition, using 16S rRNA sequencing and real-time PCR, respectively. Eleven fecal, 76 slaughterhouse surface, 11 cecal, and 11 carcass samples, from 11 poultry farms belonging to the same short food chain, were analyzed in the study. Results: While cleaning and disinfection procedures appeared to reduce the bacterial load on slaughterhouse surfaces, diverse and potentially resistant bacteria, including genera such as Staphylococcus and Streptococcus, persisted both before and after slaughter. ARGs conferring resistance to high-priority critically important antimicrobials (HPCIAs), such as fluoroquinolones and third-generation cephalosporins, were frequently detected on carcasses, with qnrS (76.15%, 95%CI 68.02-84.28%) and bla(CMY2) (57.8%, 95%CI 48.38-67.22%) being the most prevalent. The slaughtering process emerged as a critical step for ARG dissemination via intestinal bacteria, such as genus Lactobacillus. Additionally, the detection of mcr genes and bla(NDM) on carcasses but not in the bird gut samples suggests possible anthropogenic contamination. Discussion: These findings highlight that the evisceration process, slaughterhouse environment, and personnel are all contributing factors in ARG spread and underscore the need for enhanced hygiene protocols and reduced gut ARG carriage in domestic birds to mitigate the risk for the consumer.202540558194
531220.9995Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; bla(OXA), bla(VEB), bla(KPC), bla(GES), mphE, mef, erm, msrE, AAC(6'), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment.202438930614
526730.9995Diversity and antibiotic resistance of cultivable bacteria in bulk tank milk from dairy farms in Shandong Province, China. INTRODUCTION: This study systematically analyzed bacterial diversity and antimicrobial resistance (AMR) profiles in bulk tank milk from five dairy farms (n = 30) in Shandong Province, China, to assess public health risks associated with microbial contamination and provide critical data for regional quality control and AMR risk assessment in dairy production systems. METHODS: Total bacterial counts were quantified, revealing significant inter-farm variation (P < 0.05) with a range of 3.94-6.68 log CFU/mL. Among 129 bacterial isolates, genus-level dominance and species prevalence were identified. Antimicrobial susceptibility testing (AST) against 10 agents was performed using integrated resistance criteria combining Clinical and Laboratory Standards Institute (CLSI) standards and epidemiological cutoff values (ECOFFs). Nine resistance genes targeting seven antibiotic classes were detected via PCR. RESULTS: The highest resistance rate was observed for sulfadiazine (53.2%) and the lowest for levofloxacin (6.0%). Multidrug resistance was detected in 23% (20/87) of isolates, with 14 strains meeting ECOFFs-based resistance criteria. PCR analysis showed sul1 (70.5%) and ant(4')-Ia (54.3%) as the most prevalent resistance genes, while mcr-1, lnu (B), and bla (NDM-1) were absent in all isolates. Regional resistance variations correlated significantly with farm management practices. DISCUSSION: These findings underscore the impact of historical antibiotic use on AMR dissemination. Enhanced AMR surveillance in raw milk, improved antibiotic stewardship, and targeted interventions are crucial to mitigate public health risks from microbial contamination and horizontal gene transfer of resistance determinants.202540771950
258440.9994Resistance to medically important antimicrobials in broiler and layer farms in Cameroon and its relation with biosecurity and antimicrobial use. INTRODUCTION: Poultry production accounts for 42% of Cameroonian meat production. However, infectious diseases represent the main hindrance in this sector, resulting in overuse and misuse of antimicrobials that can contribute to the emergence and dissemination of antimicrobial resistance (AMR). This study aimed to evaluate the prevalence of antimicrobial resistance genes (ARGs) conferring resistance to carbapenems (bla(VIM-2) and bla(NDM) ), (fluoro) quinolones (qnrS, qnrA, and qnrB), polymyxins (mcr1 to mcr5), and macrolides (ermA and ermB) in the poultry farm environment. Additionally, the study examined the relationship between these ARGs and biosecurity implementation, as well as farmers' knowledge, attitudes, and practices toward antimicrobial use (AMU) and AMR, including their perception of AMR risk. MATERIALS AND METHODS: Fecal, drinking water, and biofilm samples from drinking water pipelines were collected from 15 poultry farms and subsequently analyzed by real-time PCR and 16S rRNA NGS. RESULTS: All samples tested positive for genes conferring resistance to (fluoro) quinolones, 97.8% to macrolides, 64.4% to polymyxins, and 11.1% to carbapenems. Of concern, more than half of the samples (64.4%) showed a multi-drug resistance (MDR) pattern (i.e., resistance to ≥3 antimicrobial classes). Drinking water and biofilm microbial communities significantly differed from the one of the fecal samples, both in term of diversity (α-diversity) and composition (β-diversity). Furthermore, opportunistic pathogens (i.e., Comamonadaceae and Sphingomonadaceae) were among the most abundant bacteria in drinking water and biofilm. The level of biosecurity implementation was intermediate, while the knowledge and attitude of poultry farmers toward AMU were insufficient and unsuitable, respectively. Good practices toward AMU were found to be correlated with a reduction in polymyxins and MDR. DISCUSSION: This study provides valuable information on resistance to medically important antimicrobials in poultry production in Cameroon and highlights their potential impact on human and environmental health.202439881983
274150.9994ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., bla(CTX-M) or bla(SHV) and mcr-1) in the environment.IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.202032033950
275260.9994Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of bla (OXA-48), bla (KPC), bla (VIM-2), qnrS, and aac(6')-lb-cr, whereas only bla (VIM-2) was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae (n = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 Escherichia coli harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, mcr-1/2 was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.201930994094
259570.9994Antibiotic resistance pattern of waterborne causative agents of healthcare-associated infections: A call for biofilm control in hospital water systems. BACKGROUND: In recent years, the global spread of antimicrobial resistance has become a concerning issue, often referred to as a "silent pandemic". Healthcare-associated infections (HAIs) caused by antibiotic-resistant bacteria (ARB) are a recurring problem, with some originating from waterborne route. The study aimed to investigate the presence of clinically relevant opportunistic bacteria and antibiotic resistance genes (ARGs) in hospital water distribution systems (WDSs). METHODS: Water and biofilm samples (n = 192) were collected from nine hospitals in Isfahan and Kashan, located in central Iran, between May 2022 and June 2023. The samples were analyzed to determine the presence and quantities of opportunistic bacteria and ARGs using cultural and molecular methods. RESULTS: Staphylococcus spp. were highly detected in WDS samples (90 isolates), with 33 % of them harboring mecA gene. However, the occurrences of E. coli (1 isolate), Acinetobacter baumannii (3 isolates), and Pseudomonas aeruginosa (14 isolates) were low. Moreover, several Gram-negative bacteria containing ARGs were identified in the samples, mainly belonging to Stenotrophomonas, Sphingomonas and Brevundimonas genera. Various ARGs, as well as intI1, were found in hospital WDSs (ranging from 14 % to 60 %), with higher occurrences in the biofilm samples. CONCLUSION: Our results underscore the importance of biofilms in water taps as hotspots for the dissemination of opportunistic bacteria and ARG within hospital environments. The identification of multiple opportunistic bacteria and ARGs raises concerns about the potential exposure and acquisition of HAIs, emphasizing the need for proactive measures, particularly in controlling biofilms, to mitigate infection risks in healthcare settings.202438838607
284380.9994High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. From a global view of antimicrobial resistance over different sectors, seafood and the marine environment are often considered as potential reservoirs of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs); however, there are few studies and sparse results on this sector. This study aims to provide new data and insights regarding the content of resistance markers in various seafood samples and sources, and therefore the potential exposure to humans in a global One Health approach. An innovative high throughput qPCR screening was developed and validated in order to simultaneously investigate the presence of 41 ARGs and 33 MGEs including plasmid replicons, integrons, and insertion sequences in Gram-negative bacteria. Analysis of 268 seafood isolates from the bacterial microflora of cod (n = 24), shellfish (n = 66), flat fishes (n = 53), shrimp (n = 10), and horse mackerel (n = 115) show the occurrence of sul-1, ant(3″)-Ia, aph(3')-Ia, strA, strB, dfrA1, qnrA, and bla(CTX-M-9) genes in Pseudomonas spp., Providencia spp., Klebsiella spp., Proteus spp., and Shewanella spp. isolates and the presence of MGEs in all bacterial species investigated. We found that the occurrence of MGE may be associated with the seafood type and the environmental, farming, and harvest conditions. Moreover, even if MGE were detected in half of the seafood isolates investigated, association with ARG was only identified for twelve isolates. The results corroborate the hypothesis that the incidence of antimicrobial-resistant bacteria (ARB) and ARG decreases with increasing distance from potential sources of fecal contamination. This unique and original high throughput micro-array designed for the screening of ARG and MGE in Gram-negative bacteria could be easily implementable for monitoring antimicrobial resistance gene markers in diverse contexts.202235744743
287790.9994Metagenomic insights into isolable bacterial communities and antimicrobial resistance in airborne dust from pig farms. This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 10(3) CFU/m(3)) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.202438872793
2742100.9994Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Slaughterhouse process- and wastewater are considered as a hotspot for antibiotic-resistant bacteria and antimicrobial residues and may thus play an important role for their dissemination into the environment. In this study, we investigated occurrence and characteristics of ESKAPE bacteria (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.) and ESBL (extended spectrum β-lactamase) -producing E. coli in water samples of different processing stages of two German pig slaughterhouses (S1/S2) as well as their municipal wastewater treatment plants (mWWTPs). Furthermore, residues of various antimicrobials were determined. A total of 103 water samples were taken in delivery and dirty areas of the slaughterhouses S1/S2 (n = 37), their in-house WWTPs (n = 30) and mWWTPs including their receiving water bodies (n = 36). The recovered isolates (n = 886) were characterized for their antimicrobial resistance pattern and its genetic basis. Targeted species were ubiquitous along the slaughtering and wastewater chains. Phenotypic and genotypic analyses revealed a broad variety of resistance phenotypes and β-lactamase genes. Carbapenemase-producing Enterobacteriaceae (CPE), vancomycin-resistant enterococci (VRE) and healthcare-associated (HA) MRSA were recovered only from mWWTPs and their preflooders. In contrast, the mcr-1 gene was exclusively detected in E. coli from S1/S2. Residues of five antimicrobials were detected in 14.9% (10/67) of S1/S2 samples in low range concentrations (≤1.30 μg/L), whereas 91.7% (33/36) of mWWTPs samples exhibited residues of 22 different antibiotics in concentrations of up to 4.20 μg/L. Target bacteria from S1/S2 and mWWTPs exhibited differences in their abundances, resistance phenotypes and genotypes as well as clonal lineages. S1/S2 samples exhibited bacteria with zoonotic potential (e.g. MRSA of CC398, E. coli of significant clones), whereas ESKAPE bacteria exhibiting resistances of clinical importance were mainly detected in mWWTPs. Municipal WWTPs seem to fail to eliminate these bacteria leading to a discharge into the preflooder and a subsequent dissemination into the surface water.202032498197
5264110.9994Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment.201931671709
5342120.9994Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs.202236071971
5367130.9994Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain. The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain. Four sampling campaigns were conducted during winter and summer 2023 across different treatment stages. Due to drought conditions, reclaimed water from the Baix Llobregat WWTP was discharged upstream of the DWTP intake to supplement water resources for indirect potable reuse. A total of 991 cultivable ARB were obtained, enabling phenotypic and genotypic characterisation. The most prevalent included Aeromonas spp. (44.3 %), Enterobacterales (27.9 %), Pseudomonas spp. (19.1 %), Acinetobacter spp. (4.8 %), Shewanella spp. (2.2 %), Stenotrophomonas spp. (1 %), and others (0.7 %). Among these, 57.3 % were multidrug-resistant and 2.7 % were extensively drug-resistant. Furthermore, 34.6 % produced extended-spectrum beta-lactamases, 14.1 % harboured carbapenemase genes, and 2.9 % exhibited colistin resistance. Shotgun metagenomic analysis revealed high taxonomic diversity, without dominant genera across treatment stages. The resistome was dominated by ARGs conferring resistance to beta-lactams, aminoglycosides, and macrolides, alongside genes linked to biocide resistance and heavy metal tolerance. Spearman correlation analysis of selected sequenced strains suggested a weak to moderate co-occurrence between ARGs and biocide or heavy metal tolerance genes. These findings underline WWTPs as AMR hotspots and reinforce the need to monitor DWTP source water within the One Health framework.202540914035
5612140.9994Epidemiological factors associated with the prevalence of mobile genetic elements, and antimicrobial resistance patterns in Klebsiella pneumoniae of farm environments in Bangladesh. Farm environments serve as reservoirs for antibiotic-resistant bacteria and mobile genetic elements (MGEs), spreading resistance genes. Klebsiella pneumoniae, a nosocomial opportunistic pathogen, often acquires resistance through MGEs. This study examined the prevalence, resistance patterns, and factors associated with MGEs in K. pneumoniae isolates, focusing on environmental and management practices. 48 pooled samples were collected from environmental niches in three major districts of Bangladesh including Dhaka, Barisal, and Sylhet and analyzed using standard microbiological techniques and PCR. Antibiotic susceptibility was assessed per CLSI (2020) guidelines, and multidrug-resistant (MDR) strains were identified. Genotypic resistance patterns and mobile genetic elements (MGEs), including class 1 integrons and plasmids, were detected via PCR. Fisher's exact test evaluated factors associated with MGEs. Overall, 66.66% tested positive for K. pneumoniae. Regarding resistance patterns, the highest resistance was observed to ertapenem (90.6%) and ampicillin (84%), while complete sensitivity was noted to several antibiotics, including amikacin and tigecycline. Among the tested isolates, 53.12% were identified as MDR. Genotypic analysis revealed that bla(CTX-M), bla(NDM-5,)bla(Oxa-1) and bla(Oxa-48) were the most prevalent. Additionally, the presence of MGEs including class 1 integron and IncQ type plasmid were significantly associated with factors such as poor sanitation, antibiotic misuse, and high cattle density, highlighting critical areas for intervention. This study revealed that MDR K. pneumoniae circulates in food animals' farm environments in Bangladesh, with environmental factors strongly linked to the presence of MGEs. Farm niches, particularly soil, act as key reservoirs of MGEs and resistance genes. Importantly, these also carry serious implications for human health, as resistance genes may transfer to clinical settings, exacerbating the burden of AMR. Strengthening environmental and agricultural policies through a One Health approach is essential to mitigate the public health threat posed by antimicrobial resistance.202540619416
1927150.9994First Molecular Characterization and Antibiogram of Bacteria Isolated From Dairy Farm Wastewater in Bangladesh. This pioneering study in Bangladesh combines phenotypic and genotypic approaches to characterize antibiotic-resistant bacteria in dairy farm wastewater, addressing a critical gap in regional antimicrobial resistance (AMR) research. Dairy farming is integral to global food production, yet the wastewater generated by these operations is a significant source of environmental and public health concerns, particularly in the context of antibiotic resistance. This study aimed to isolate and identify antibiotic-resistant bacteria from dairy farm wastewater and evaluate their antibiogram profiles to inform effective management strategies. A total of 60 wastewater samples were collected and subjected to conventional bacterial characterization, followed by molecular detection via PCR and 16S rRNA gene sequencing. The study identified Pseudomonas aeruginosa (35%), Escherichia coli (30%), Bacillus subtilis (16.67%), and Acinetobacter junii (8.33%) as the predominant bacterial species. Sequencing results demonstrated high compatibility with reference sequences, confirming the identities of the isolates. Antibiogram analysis revealed significant resistance patterns: P. aeruginosa exhibited the highest resistance to penicillin (85.71%) and amoxicillin (76.19%), while demonstrating greater sensitivity to ciprofloxacin and cotrimoxazole. E. coli showed notable resistance to penicillin (88.89%), amoxicillin, and ceftriaxone, while B. subtilis and A. junii also demonstrated high levels of resistance to multiple antibiotics. Notably, a substantial proportion of the isolates exhibited multidrug resistance (MDR), with MAR indices ranging from 0.37 to 0.75. Moreover, several antibiotic resistance genes (ARGs) including penA, bla (TEM) , bla (CTX-M) , tetA, tetB, tetC, and ermB were detected across the bacterial species, with high prevalence rates in P. aeruginosa and A. junii, suggesting the potential for horizontal gene transfer and further spread of resistance. These findings underscore the critical need for a One Health approach to mitigate the risks posed by antibiotic-resistant bacteria in dairy farm wastewater, emphasizing the critical importance of responsible antibiotic use and sustainable farming practices to protect public health and environmental integrity.202540458482
5366160.9994Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, bla(TEM), and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.202437813266
2739170.9994Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. INTRODUCTION: Wastewaters carrying thousands of human specimens from the community and representing the diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) directly from the community mirror the extent of AR spread in the community and environment. This study aimed to investigate the occurrence and distribution of antibiotic-resistant ESKAPEE bacteria in the community versus clinical settings through monitoring nonclinical and clinical wastewaters. METHODOLOGY: Seven wastewater samples were collected from different environmental sources. Isolates were obtained on general and selective media, biochemically characterized and antimicrobial-susceptibility tests performed by disk diffusion against 13 antibiotics according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines using MastDisc disk cartridges, and 16S rRNA metagenomic analysis was performed for two water samples. RESULTS: Of 43 isolates, all representatives of the ESKAPEE group were recovered from clinical wastewaters, but Gram-positive cocci were not obtained from nonclinical wastewaters. The most predominant isolate was Pseudomonas aeruginosa (n=15; 33%), followed by Escherichia coli (n=9; 20%). Complete (100%) resistance to eleven of the tested antibiotics was observed, with only a few isolates being susceptible to clarithromycin, amikacin, and gentamicin. The lowest (79%) resistance rate was observed for linezolid. The multiple antibiotic resistance (MAR) index was calculated, and the resistance phenotype was independent of the wastewater source, indicated by x (2) (P=0.766). Metagenomic analysis replicated the results, as Pseudomonas spp., Acinetobacter spp., and Escherichia spp. were found to be predominant. The integrase gene (IntI1) was also amplified in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. CONCLUSION: Wastewaters are significant carriers of drug-resistant ESKAPEE bacteria and play an important role in their dissemination. This study endorses the periodic surveillance of water systems to evaluate the presence and burden of antibiotic-resistant pathogens.202236199818
2727180.9994Prevalence and Antibiotic Resistance Pattern of Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae in Two Reference Hospitals of Yaoundé: An Overview before and during COVID-19 Pandemic Era. The COVID-19 pandemic led to tremendously use of antimicrobial due to the lack of proper treatment strategies, raising concerns about emergence of antimicrobial resistance (AMR). This study aimed at determining the prevalence and antibiotic resistance pattern of selected bacteria isolates in 02 referral health facilities in Yaoundé before and during the COVID-19 pandemic era. We conducted a retrospective study over a period of 03 years (from 1 January 2019 to 31 December 2021) in the bacteriology units of the Central and General Hospitals of Yaoundé, Cameroon. Data on bacteria genera (Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae) as well as their corresponding specifics antibiotics: Cefixime, azythromycin and erythromycin were obtained from laboratory records. The global resistance rate of bacteria as well as their correlation with antibiotics according to COVID-19 pandemic era was determined and compared. For p < 0.05, the difference was statistically significant. In all, 426 bacterial strains were included. It appeared that the highest number of bacteria isolates and lowest rate of bacterial resistance were recorded during the pre-COVID-19 period in 2019 (160 isolates vs. 58.8% resistance rate). Conversely, lower bacteria strains but greater resistance burden were recorded during the pandemic era (2020 and 2021) with the lowest bacteria amount and peak of bacteria resistance registered in 2020, the year of COVID-19 onset (120 isolates vs. 70% resistance in 2020 and 146 isolates vs. 58.9% resistance in 2021). In contrast to almost all others groups of bacteria where the resistance burden was quite constant or decreasing over years, the Enterobacteriaceae exhibited greater resistance rate during the pandemic period [60% (48/80) in 2019 to 86.9% (60/69) in 2020 and 64.5% (61/95) in 2021)]. Concerning antibiotics, unlike erythromycin, azythromycin related resitance increased during the pandemic period and the resistance to Cefixim tends to decrease the year of the pandemic onset (2020) and re-increase one year therafter. A significant association was found between resistant Enterobacteriaceae strains and cefixime (R = 0.7; p = 0.0001) and also, between resistant Staphylococcus strains and erythromycin (R = 0.8; p = 0.0001). These retrospective data showed a herogeneous MDR bacteria rate and antibiotic resistance pattern over time before and during the COVID-19 pandemic era suggesting that antimicrobial resistance needs to be more closely monitored.202337237832
2841190.9994Antimicrobial resistance reservoirs in salmon and broiler processing environments, sidestreams, and waste discharges. Mapping reservoirs of antimicrobial resistance (AMR) across food value chains and their environmental dissemination pathways is essential for limiting the spread and impact of AMR. The aim of this study was to investigate the prevalence of AMR genes and bacteria in sidestream materials, waste discharges, and processing environments of salmon and broiler. A targeted hybrid capture-based sequencing approach was used to characterize the resistome in samples collected from four processing plants, revealing a diverse range of AMR genes. Among these, we found several high-risk AMR genes, including the multidrug resistance genes TolC and mdtE, tetracycline genes tet(L) and tet(M), aminoglycoside genes APH(3')-IIIa and APH(6)-Id, and beta-lactam genes mecA and mecR1. Overall, the highest numbers of AMR genes were found in samples of process wastewater and sludge, ranging from 32 to 330 unique genes. More than 300 bacterial isolates, including Enterobacterales, Enterococcus and Pseudomonas spp. were also collected and identified, and a subset was tested for antibiotic susceptibility. Antibiotic resistance among Enterococcus and Pseudomonas spp. was low. Quinolone-resistant Escherichia coli (QREC) were detected in waste discharges from two broiler processing plants, while multidrug resistant (MDR) E. coli were found only in one plant. Whole genome sequencing of MDR isolates revealed multiple plasmids and AMR genes such as sul2, ant(3″)-Ia, qnrS1, and bla(CTX-M-1) . Our study highlights that wastewater from food industries can contribute to the release of AMR bacteria and genes to the environment. While the prevalence of AMR bacteria in sidestream materials was low among the isolates in our collection, numerous AMR genes were detected, which may be re-introduced to new production systems.202541035889