# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 225 | 0 | 1.0000 | Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection. | 2020 | 32157424 |
| 224 | 1 | 0.9998 | Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes. | 2023 | 37791675 |
| 9779 | 2 | 0.9998 | Mechanisms of Polymyxin Resistance. Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-(L)-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species. | 2019 | 31364071 |
| 9099 | 3 | 0.9997 | Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. Infections caused by multi-drug resistant bacteria, particularly Gram-negative bacteria, are an ever-increasing problem. While the development of new antibiotics remains one option in the fight against bacteria that have become resistant to currently available antibiotics, an attractive alternative is the development of adjuvant therapeutics that restore the efficacy of existing antibiotics. We report a small molecule adjuvant that suppresses colistin resistance in multidrug resistant Acinetobacter baumannii and Klebsiella pneumoniae by interfering with the expression of a two-component system. The compound downregulates the pmrCAB operon and reverses phosphoethanolamine modification of lipid A responsible for colistin resistance. Furthermore, colistin-susceptible and colistin-resistant bacteria do not evolve resistance to combination treatment. This represents the first definitive example of a compound that breaks antibiotic resistance by directly modulating two-component system activity. | 2014 | 24131198 |
| 9782 | 4 | 0.9997 | Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Low permeability across the outer membrane is a major reason why most antibiotics are ineffective against Gram-negative bacteria. Agents that permeabilize the outer membrane are typically toxic at their effective concentrations. Here, we report the development of a broad-spectrum homodimeric tobramycin adjuvant that is nontoxic and more potent than the gold standard permeabilizing agent, polymyxin B nonapeptide. In pilot studies, the adjuvant confers potent bactericidal activity on novobiocin against Gram-negative bacteria, including carbapenem-resistant and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly reduced, relative to novobiocin alone, and there was no induction of cross-resistance to other antibiotics, including the gyrase-acting fluoroquinolones. Tobramycin homodimer may allow the use of lower doses of novobiocin, overcoming its twin problem of efficacy and toxicity. | 2019 | 31557020 |
| 9103 | 5 | 0.9997 | Development of cannabidiol derivatives as potent broad-spectrum antibacterial agents with membrane-disruptive mechanism. The emergence of antibiotic resistance has brought a significant burden to public health. Here, we designed and synthesized a series of cannabidiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. This is the first report on the design of cannabidiol derivatives as broad-spectrum antibacterial agents. Through the structure-activity relationship (SAR) study, we found a lead compound 23 that killed both Gram-negative and Gram-positive bacteria via a membrane-targeting mechanism of action with low resistance frequencies. Compound 23 also exhibited very weak hemolytic activity, low toxicity toward mammalian cells, and rapid bactericidal properties. To further validate the membrane action mechanism of compound 23, we performed transcriptomic analysis using RNA-seq, which revealed that treatment with compound 23 altered many cell wall/membrane/envelope biogenesis-related genes in Gram-positive and Gram-negative bacteria. More importantly, compound 23 showed potent in vivo antibacterial efficacy in murine corneal infection models caused by Staphylococcus aureus or Pseudomonas aeruginosa. These findings would provide a new design idea for the discovery of novel broad-spectrum antibacterial agents to overcome the antibiotic resistance crisis. | 2024 | 38266554 |
| 9776 | 6 | 0.9997 | Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria. | 2014 | 25505462 |
| 4434 | 7 | 0.9997 | Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. Vancomycin, a natural glycopeptide antibiotic, was used as the antibiotic of last resort for the treatment of multidrug-resistant Gram-positive bacterial infections. However, almost 30 years after its use, resistance to vancomycin was first reported in 1986 in France. This became a major health concern, and alternative treatment strategies were urgently needed. New classes of molecules, including semisynthetic antibacterial compounds and newer generations of the previously used antibiotics, were developed. Semisynthetic derivatives of vancomycin with enhanced binding affinity, membrane disruption ability, and lipid binding properties have exhibited promising results against both Gram-positive and Gram-negative bacteria. Various successful approaches developed to overcome the acquired resistance in Gram-positive bacteria, intrinsic resistance in Gram-negative bacteria, and other forms of noninherited resistance to vancomycin have been discussed in this Perspective. | 2019 | 30404451 |
| 223 | 8 | 0.9997 | Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy. | 2023 | 37760679 |
| 9775 | 9 | 0.9997 | Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes. | 2021 | 34476235 |
| 9778 | 10 | 0.9996 | Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-β-lactamase, metallo-β-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance. | 2024 | 38579010 |
| 9100 | 11 | 0.9996 | Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections. | 2021 | 34325929 |
| 4412 | 12 | 0.9996 | PmrAB, the two-component system of Acinetobacter baumannii, controls the phosphoethanolamine modification of lipooligosaccharide in response to metal ions. Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe(2+), Zn(2+), and Al(3+). A. baumannii selectively recognizes Fe(2+) rather than Fe(3+), and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al(3+), contributing to the attenuation of Al(3+) toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem. | 2024 | 38661375 |
| 9749 | 13 | 0.9996 | Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug-resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive bacteria but inefficient against Gram-negative species. The nanospherization extended its effect toward Gram-negative Escherichia coli and Pseudomonas aeruginosa, making these bacteria up to 10 and 100 times more sensitive to the antibiotic, respectively. The spheres were able to disrupt the outer membranes of these bacteria, overcoming their intrinsic resistance toward glycopeptides. The penetration of nanospheres into a Langmuir monolayer of bacterial membrane phospholipids confirmed the interaction of the nanoantibiotic with the membrane of E. coli cells, affecting their physical integrity, as further visualized by scanning electron microscopy. Such mechanism of antibacterial action is unlikely to induce mutations in the evolutionary conserved bacterial membrane, therefore reducing the possibility of acquiring resistance. Our results indicated that the nanotransformation of vancomycin could overcome the inherent resistance of Gram-negative bacteria toward this antibiotic and disrupt mature biofilms at antibacterial-effective concentrations. | 2017 | 28393523 |
| 9129 | 14 | 0.9996 | Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance. | 2020 | 32961699 |
| 9422 | 15 | 0.9996 | Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. | 2014 | 25419466 |
| 9780 | 16 | 0.9996 | Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance. | 2021 | 34723787 |
| 768 | 17 | 0.9996 | The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo(2)-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions. | 2024 | 39382292 |
| 4433 | 18 | 0.9996 | The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. A last line of defence against "superbugs" are the vancomycin group antibiotics. This review describes the determination of their mode of action, and a mechanism of resistance to them. Remarkably, this mechanism of resistance can be overcome without directly modifying the binding site of the antibiotics for the cell-wall precursors of pathogenic bacteria. | 1999 | 29711719 |
| 791 | 19 | 0.9996 | Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens. | 2014 | 25405886 |