Tracking Multidrug Resistance in Gram-Negative Bacteria in Alexandria, Egypt (2020-2023): An Integrated Analysis of Patient Data and Diagnostic Tools. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
224901.0000Tracking Multidrug Resistance in Gram-Negative Bacteria in Alexandria, Egypt (2020-2023): An Integrated Analysis of Patient Data and Diagnostic Tools. BACKGROUND: The rise in carbapenem-resistant Enterobacteriaceae (CRE) in Egypt, particularly in hospital settings, poses a significant public health challenge. This study aims to develop a combined epidemiological surveillance tool utilizing the Microreact online platform (version 269) and molecular microarray technology to track and analyze carbapenem-resistant Escherichia coli strains in Egypt. The objective is to integrate molecular diagnostics and real-time data visualization to better understand the spread and evolution of multidrug-resistant (MDR) bacteria. METHODS: The study analyzed 43 E. coli isolates collected from Egyptian hospitals between 2020 and 2023. Nanopore sequencing and microarray analysis were used to identify carbapenemase genes and other resistance markers, whereas the VITEK2 system was employed for phenotypic antibiotic susceptibility testing. Microreact was used to visualize epidemiological data, mapping the geographic and temporal distribution of resistant strains. RESULTS: We found that 72.09% of the isolates, predominantly from pediatric patients, carried the blaNDM-5 gene, while other carbapenemase genes, including blaOXA-48 and blaVIM, were also detected. The microarray method demonstrated 92.9% diagnostic sensitivity and 87.7% diagnostic specificity compared to whole-genome sequencing. Phenotypic resistance correlated strongly with next-generation sequencing (NGS) genotypic data, achieving 95.6% sensitivity and 95.2% specificity. CONCLUSIONS: This method establishes the utility of combining microarray technology, NGS and real-time data visualization for the surveillance of carbapenem-resistant Enterobacteriaceae, especially E. coli. The high concordance between genotypic and phenotypic data underscores the potential of DNA microarrays as a cost-effective alternative to whole-genome sequencing, especially in resource-limited settings. This integrated approach can enhance public health responses to MDR bacteria in Egypt.202439766575
224810.9998Predictive Application Value of Metagenomic Next-Generation Sequencing in the Resistance of Carbapenem-Resistant Enterobacteriaceae. Objective: Although metagenomic next-generation sequencing (mNGS) technology has achieved notable outcomes in pathogen detection, there remains a gap in the research regarding its application in predicting the antibiotic resistance of pathogenic bacteria. This study aims to analyze the clinical application value of mNGS in predicting the resistance of carbapenem-resistant Enterobacteriaceae (CRE), as well as the relevant influencing factors, thereby providing valuable insights for clinical antimicrobial therapy. Methods: Nonduplicate isolates of Enterobacterales bacteria collected from Liaocheng People's Hospital from April 2023 to June 2024 were selected, and CRE bacteria were screened. mNGS was used to detect resistance genes, and the results were compared with those of polymerase chain reaction (PCR) to evaluate the specificity and sensitivity of gene detection. Furthermore, the performance of mNGS in identifying pathogenic microorganisms and predicting antibiotic resistance was assessed by comparing the sequencing results with those of antimicrobial susceptibility testing (AST). Results: A total of 46 isolates were confirmed as CRE through traditional AST and were further identified using the Vitek MS and Vitek 2 systems. The results indicated 27 isolates of Klebsiella pneumoniae, 14 isolates of Escherichia coli, 2 isolates of Enterobacter hormaechei, 2 isolates of Enterobacter cloacae, and 1 isolate of Citrobacter freundii. These isolates were subjected to both mNGS and PCR for detection. The calculation of the area under the receiver operating characteristic (ROC) curve demonstrated the reliability of mNGS in detecting resistance genes. Conclusion: mNGS demonstrated high sensitivity in predicting the presence of carbapenemase resistance genes in CRE, showing potential in early indication of isolate resistance information, thereby facilitating timely guidance for clinical treatment strategies.202539816186
182520.9998Free online genome analyses reveal multiple strains in the beginning of a hospital outbreak of Enterobacter hormaechei carrying bla (OXA-436) carbapenemase gene. Free online tools for bacterial genome analyses are available for local infection surveillance at hospitals. The tools do not require bioinformatic expertise and provide rapid actionable results. Within half a year carbapenemase producing Enterobacter cloacae was reported in clinical samples from three patients who had been hospitalized at the same ward. The aim of this outbreak investigation was to characterize and compare genomes of the isolated bacteria in order to determine molecular evidence of hospital transmission. The three isolates and two isolates reported as susceptible to carbapenems were locally analyzed by whole genome sequencing (WGS). Draft genome assembly, species identification, phylogenetic analyses, typing, resistance gene determination, and plasmid analyses were carried out using free online tools from the Center for Genomic Epidemiology (CGE). Genome analyses identified all three suspected outbreak isolates as E. hormaechei carrying bla (OXA-436) gene. Two of the suspected outbreak isolates were closely related, while one was substantially different from them. Horizontal transfer of plasmid may have taken place in the ward. Detailed knowledge on the genomic composition of bacteria in suspected hospital outbreaks can be obtained by free online tools and may reveal transfer of resistance genes between different strains in addition to dissemination of specific clones.202236003132
224730.9998Metagenomic identification of pathogens and antimicrobial-resistant genes in bacterial positive blood cultures by nanopore sequencing. Nanopore sequencing workflows have attracted increasing attention owing to their fast, real-time, and convenient portability. Positive blood culture samples were collected from patients with bacterial bloodstream infection and tested by nanopore sequencing. This study compared the sequencing results for pathogen taxonomic profiling and antimicrobial resistance genes to those of species identification and phenotypic drug susceptibility using traditional microbiology testing. A total of 37 bacterial positive blood culture results of strain genotyping by nanopore sequencing were consistent with those of mass spectrometry. Among them, one mixed infection of bacteria and fungi was identified using nanopore sequencing and confirmatory quantitative polymerase chain reaction. The amount of sequencing data was 21.89 ± 8.46 MB for species identification, and 1.0 MB microbial strain data enabled accurate determination. Data volumes greater than or equal to 94.6 MB nearly covered all the antimicrobial resistance genes of the bacteria in our study. In addition, the results of the antimicrobial resistance genes were compared with those of phenotypic drug susceptibility testing for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Therefore, the nanopore sequencing platform for rapid identification of causing pathogens and relevant antimicrobial resistance genes complementary to conventional blood culture outcomes may optimize antimicrobial stewardship management for patients with bacterial bloodstream infection.202338192400
182240.9998Carriage of two carbapenem-resistance genes in Pseudomonas aeruginosa isolated from hospital-acquired infections in children from Costa Rica: the importance of local epidemiology. BACKGROUND: The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial pathogens; however, few are evaluated for use in low- and middle-income countries. METHODS: We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and routine culture testing. RESULTS: We identified the carriage of the metallo-β-lactamase bla(VIM-2) and bla(IMP-18) alleles in Carbapenem-Resistant Pseudomonas aeruginosa infections among children in Costa Rica. CONCLUSIONS: The bla(IMP-18) allele is not present in the most frequently used commercial tests; thus, it is possible that the circulation of this resistance gene may be underdiagnosed in Costa Rica.202133910633
168750.9998Multiple NDM-5-Expressing Escherichia Coli Isolates From an Immunocompromised Pediatric Host. BACKGROUND: Genes conferring carbapenem resistance have disseminated worldwide among Gram-negative bacteria. Here we present longitudinal changes in clinically obtained Escherichia coli isolates from 1 immunocompromised pediatric patient. This report demonstrates potential for antibiotic resistance genes and plasmids to emerge over time in clinical isolates from patients receiving intensive anticancer chemotherapy and broad-spectrum antibiotics. METHODS: Thirty-three isolates obtained over 7 months from 1 patient were included. Clinical data were abstracted from the medical record. For each isolate, studies included phenotypic antibacterial resistance patterns, sequence typing, bacterial isolate sequencing, plasmid identification, and antibiotic resistance gene identification. RESULTS: Sites of isolation included blood, wound culture, and culture for surveillance purposes from the perianal area. Isolates were of 5 sequence types (STs). All were resistant to multiple classes of antibiotics; 23 (69.6%) were phenotypically resistant to all carbapenems. The blaNDM-5 gene was identified in 22 (67%) isolates, all of ST-167 and ST-940, and appeared to coincide with the presence of the IncFII and IncX3 plasmid. CONCLUSIONS: We present unique microbiologic data from 33 multidrug-resistant E. coli isolates obtained over the course of 7 months from an individual patient in the United States. Two E. coli sequence types causing invasive infection in the same patient and harboring the blaNDM-5 gene, encoded on the IncX3 plasmid and the IncFII plasmid, were identified. This study highlights the emergence of multidrug-resistant bacteria on antibiotic therapy and the necessity of adequate neutrophil number and function in the clearance of bacteremia.202032047833
222860.9998Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.201931849899
168070.9998Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.202438494251
182380.9998Finding the Missing IMP Gene: Overcoming the Imipenemase IMP Gene Drop-Out in Automated Molecular Testing for Carbapenem-Resistant Bacteria Circulating in Latin America. Carbapenem resistance is considered one of the greatest current threats to public health, particularly in the management of infections in clinical settings. Carbapenem resistance in bacteria is mainly due to mechanisms such as the production of carbapenemases (such as the imipenemase IMP, or other enzymes like VIM, NDM, and KPC), that can be detected by several laboratory tests, including immunochromatography and automated real-time PCR (qPCR). Methods: As part of local studies to monitor carbapenem-resistant bacteria in Costa Rica, two cases were initially identified with inconsistent IMP detection results. A possible gene drop-out in the automated qPCR test was suggested based on the negative result, contrasting with the positive result by immunochromatography and whole-genome sequencing. We hypothesized that molecular testing could be optimized through the development of tailored assays to improve the detection of IMP genes. Thus, using IMP gene sequences from the local isolates and regional sequences in databases, primers were redesigned to extend the detection of IMP alleles of regional relevance. Results: The tailored qPCR was applied to a local collection of 119 carbapenem-resistant isolates. The genomes of all 14 positive cases were sequenced, verifying the results of the custom qPCR, despite the negative results of the automated testing. Conclusions: Guided by whole-genome sequencing, it was possible to extend the molecular detection of IMP alleles circulating in Latin America using a tailored qPCR to overcome IMP gene drop-out and false-negative results in an automated qPCR.202540867967
167690.9998Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537
1678100.9998Molecular characterization and descriptive analysis of carbapenemase-producing Gram-negative rod infections in Bogota, Colombia. In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries.202438629835
2253110.9998Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings.202439199988
2254120.9998Hospitalized Pets as a Source of Carbapenem-Resistance. The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to "old class antimicrobials." To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by bla (NDM-1) and bla (OXA-23). In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings.201830574124
1675130.9998Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya. BACKGROUND: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening. Surveillance of bacterial infections in ICUs and drug resistance will help to understand the magnitude of the problem it poses and inform response strategies. We assessed bacterial infections in ICU setting by identifying prevalent Gram-negative bacterial species and characterized their antibiotic susceptibility patterns. METHODS: Cross-sectional samples collected from Kenyatta National Hospital ICU between January and June 2021 were cultured and phenotypic identification of culture-positive samples performed using VITEK 2. Antibiotic susceptibility patterns were determined based on Antimicrobial Susceptibility Testing (AST) results. Cephalosporin-resistant Gram-negative bacteria were assessed by PCR to detect the presence of ESBL genes including ( (bla) CTX-M, (bla) SHV, (bla) TEM, (bla) OXA). RESULTS AND DISCUSSION: Out of the 168 Gram-negative isolates, Acinetobacter baumanii was the most abundant (35%). Other isolates that were present at frequencies more than 15% are Klebsiella pneumoniae and Escherichia. coli. A. baumaniii is known to be a notorious bacterium in ICU due to its multidrug resistance nature. Indeed, A. baumanii isolates from Kenyatta National Hospital showed significantly high level of phenotypic resistance. Concordant with the high level of phenotypic resistance, we found high carriage of the ESBL genes among the isolates analysed in this study. Moreover, majority of isolates harboured all the four ESBL genes. CONCLUSION: A high rate of phenotypic and genetic resistance was detected among the tested isolates. Resistance to cephalosporins was primarily driven by acquisition of the ESBL genes. The high prevalence rate of ESBL genes in ICU bacterial isolates shown in this study has a important implication for ICU patient management and general antibiotics use.202339850338
1856140.9998Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China. Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.202236350178
1829150.9998Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying bla(NDM-1) observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple bla(NDM) carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), bla(VIM-5) or bla(DIM-1) showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana.202235296353
866160.9998Opening Pandora's box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. OBJECTIVES: The aim of this study was to determine the percentage of antimicrobial-resistant isolates and the associated resistance mechanisms in Gram-negative bacteria from South Western Nigeria. METHODS: A total of 306 non-duplicate unbiased Gram-negative isolates were recovered from patients admitted to three teaching hospitals in South Western Nigeria in 2011 and 2013. Isolates were from clinical samples as well as from stool samples of inpatients without infection to assess antimicrobial resistance patterns in carriage isolates. Antimicrobial susceptibility testing was performed, and PCR and sequencing were used to identify genes encoding various known β-lactamases. Based on phenotypic and genotypic results, 10 isolates representing the diversity of phenotypes present were selected for whole-genome sequencing (WGS). RESULTS: Antimicrobial susceptibility testing revealed the following resistance rates: fluoroquinolones, 78.1%; third-generation cephalosporins, 92.2%; and carbapenems, 52.6%. More resistant isolates were isolated from stools of uninfected patients compared with clinical infection specimens. Klebsiella (10%) and Escherichia coli (7%) isolates produced a carbapenemase. WGS of selected isolates identified the presence of globally disseminated clones. CONCLUSION: This study illustrates a crisis for the use of first-line antimicrobial therapy in Nigerian patients. It is likely that Nigeria is playing a significant role in the spread of antimicrobial resistance owing to its large population with considerable global mobility.202031654790
5777170.9998Rapid Detection of Antimicrobial Resistance Genes in Critically Ill Children Using a Custom TaqMan Array Card. Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure.202338136735
1683180.9998Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. BACKGROUND: Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. METHODS: Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. RESULTS: The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. CONCLUSIONS: The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals.202033087168
1571190.9998Klebsiella pneumoniae ST147 harboring bla(NDM-1), multidrug resistance and hypervirulence plasmids. The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (bla(NDM-1)) is found in Enterobacteriaceae including K. pneumoniae. The bla(NDM-1) is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of bla(NDM-1) gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the bla(NDM-1) gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the bla(NDM-1) gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.202438315028