# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2246 | 0 | 1.0000 | Bayesian network modeling of patterns of antibiotic cross-resistance by bacterial sample source. BACKGROUND: Antimicrobial resistance is a major healthcare burden, aggravated when it extends to multiple drugs. While cross-resistance is well-studied experimentally, it is not the case in clinical settings, and especially not while considering confounding. Here, we estimated patterns of cross-resistance from clinical samples, while controlling for multiple clinical confounders and stratifying by sample sources. METHODS: We employed additive Bayesian network (ABN) modelling to examine antibiotic cross- resistance in five major bacterial species, obtained from different sources (urine, wound, blood, and sputum) in a clinical setting, collected in a large hospital in Israel over a 4-year period. Overall, the number of samples available were 3525 for E coli, 1125 for K pneumoniae, 1828 for P aeruginosa, 701 for P mirabilis, and 835 for S aureus. RESULTS: Patterns of cross-resistance differ across sample sources. All identified links between resistance to different antibiotics are positive. However, in 15 of 18 instances, the magnitudes of the links are significantly different between sources. For example, E coli exhibits adjusted odds ratios of gentamicin-ofloxacin cross-resistance ranging from 3.0 (95%CI [2.3,4.0]) in urine samples to 11.0 (95%CI [5.2,26.1]) in blood samples. Furthermore, we found that for P mirabilis, the magnitude of cross-resistance among linked antibiotics is higher in urine than in wound samples, whereas the opposite is true for K pneumoniae and P aeruginosa. CONCLUSIONS: Our results highlight the importance of considering sample sources when assessing likelihood of antibiotic cross-resistance. The information and methods described in our study can refine future estimation of cross-resistance patterns and facilitate determination of antibiotic treatment regimens. | 2023 | 37130943 |
| 2245 | 1 | 0.9997 | Biofilm Formation Status in ESBL-Producing Bacteria Recovered from Clinical Specimens of Patients: A Systematic Review and Meta-Analysis. BACKGROUND: Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation. METHODS: A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval. RESULTS: In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001). CONCLUSION: In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test. | 2023 | 36125823 |
| 5821 | 2 | 0.9997 | Direct prediction of antimicrobial resistance in Pseudomonas aeruginosa by metagenomic next-generation sequencing. OBJECTIVE: Pseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment. METHODS: In the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model. RESULTS: We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance. CONCLUSION: In summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria. | 2024 | 38903781 |
| 1963 | 3 | 0.9997 | Antimicrobial resistance in bacteria isolated from diseased horses in France. BACKGROUND: Horses are one of the potential reservoirs of antimicrobial resistance (AMR) determinants that could be transferred to human subjects. OBJECTIVE: To describe the AMR patterns of major bacteria isolated from diseased horses in France. STUDY DESIGN: Retrospective observational study. METHODS: Data collected between 2012 and 2016 by RESAPATH, the French national surveillance network for AMR, were analysed. Only antimicrobials relevant in veterinary and human medicine for the isolated bacteria were considered. Mono- and multidrug resistance were calculated. The resistance proportions of major equine diseases were assessed and compared. Where data permitted, resistance trends were investigated using nonlinear analysis (generalised additive models). RESULTS: A total of 12,695 antibiograms were analysed. The five most frequently isolated bacteria were Streptococcus spp., Escherichia coli, Pseudomonas spp., Staphylococcus aureus, Pantoea spp. and Klebsiella spp. The highest proportions of resistance to gentamicin were found for S. aureus (22.1%) and Pseudomonas spp. (26.9%). Klebsiella spp. and E. coli had the highest proportions of resistance to trimethoprim-sulfamethoxazole (15.5 and 26.2%, respectively). Proportions of resistance to tetracycline were among the highest for all the bacteria considered. Resistance to third-generation cephalosporins was below 10% for all Enterobacteriaceae. The highest proportions of multidrug resistance (22.5%) were found among S. aureus isolates, which is worrying given their zoonotic potential. From 2012 to 2016, resistance proportions decreased in Pseudomonas spp. isolates, but remained the same for S. aureus. For Streptococcus spp. and E. coli, resistance proportions to trimethoprim-sulfamethoxazole increased. MAIN LIMITATIONS: Since antibiograms are not systematic analyses, any selection bias could impact the results. CONCLUSIONS: Such studies are essential to estimate the magnitude of the potential threat of AMR to public health, to design efficient control strategies and to measure their effectiveness. These findings may also guide the initial empirical treatment of horse diseases. | 2020 | 31033041 |
| 2315 | 4 | 0.9997 | The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Infections represent a major complication for burn-injured patients. The aim of this study was to highlight the changes in the incidence and antimicrobial resistance of bacterial strains isolated from burn patients, at the end of the COVID-19 pandemic, in relation to the antibiotics used during the pandemic. A comparative analysis of the demographic data and the microorganisms identified in the clinical samples of two groups of burn patients admitted to a university hospital in Romania was carried out. The first group consisted of 48 patients and the second of 69 patients, hospitalized in January-August 2020 and 2023, respectively. The bacterial species with the highest incidence were S. aureus, A. baumannii, Pseudomonas spp. The significant changes between 2023 and 2020 are reflected in the increase in the frequency of non-fermentative Gram-negative bacteria, especially S. maltophilia, and the increase in antimicrobial resistance of Pseudomonas and Klebsiella spp. Klebsiella spp. did not change in frequency (7%), but there was a significant increase in the incidence of K. pneumoniae strains with pan-drug resistant behaviour to antibiotics (40%), including colistin. The phenomenon can be explained by the selection of specimens carrying multiple resistance genes, as a result of antibiotic treatment during the COVID-19 period. The post-pandemic antimicrobial resistance detected in burn patients indicates the need for permanent surveillance of the resistance trends, primarily due to the limited therapeutic options available for these patients. | 2024 | 39334997 |
| 1830 | 5 | 0.9997 | Shifts in bla genes and Class 1 integron prevalence in beta-lactamase-producing bacteria before and after the COVID-19 pandemic in Mendoza, Argentina. This study analyzes the molecular epidemiology of bla genes and Class 1 integron in broad-spectrum beta-lactamase (BSBL) and extended-spectrum beta-lactamase (ESBL) producing strains of bacteria isolated from clinical samples of hospitalized and ambulatory patients before and after the COVID-19 pandemic. Isolates obtained in two periods were compared: the first corresponding to the years November 2019-March 2020, and the second to the years November 2021-April 2022. We evaluate changes in resistance patterns of antibiotics associated with pressures on the healthcare system and social lockdowns. A total of 156 isolates were analyzed: 78 from the first period (61 hospitalized, 17 ambulatory) and 78 from the second period (47 hospitalized, 31 ambulatory). Escherichia coli and Klebsiella pneumoniae were the predominant bacterial species, representing 85% of the isolates in both periods. The frequency of ambulatory ESBL-producing isolates increased significantly, from 22% (17/78) to 40% (31/78; P < 0.01) in the second period. The prevalence of bla(SHV) increased from 24% (19/78) to 72% (56/78; P < 0.01) in the second period, while the bla(CTX-M-2) group, absent in the first period, was detected in 43% (34/78) of isolates from the second period. Strains from the second period exhibited greater genetic complexity, with an increased prevalence of combinations involving three or more bla genes, including isolates carrying up to five of such genes. Class 1 integron showed a strong correlation with resistance to ciprofloxacin and trimethoprim-sulfamethoxazole. The gene bla(OXA-1), previously associated with resistance to beta-lactamase inhibitors, did not show a clear pattern in the second period.IMPORTANCEAntimicrobial resistance associated with the production of extended-spectrum beta-lactamase (ESBL) represents a critical global health challenge, particularly due to the limited development of new antibiotics. This is the first report from Argentina's central-west region examining the prevalence of beta-lactamase-encoding genes, providing a framework for future research. Our findings reveal a significant increase in bacteria with the ESBL phenotype, particularly among ambulatory populations post-pandemic, suggesting a concerning spread of multidrug-resistant bacteria outside hospital environments. This could compromise empirical antibiotic treatments for ambulatory patients, increasing the risk of severe complications. Our results highlight the urgent need for ongoing surveillance to detect virulent strains before clonal spread or horizontal gene transfer occurs in the community. They also emphasize the importance of strategies to ensure the prudent use of antimicrobials and mitigate the increasing prevalence of resistance genes, which threatens the effectiveness of current therapeutic options. | 2025 | 40662585 |
| 2254 | 6 | 0.9997 | Hospitalized Pets as a Source of Carbapenem-Resistance. The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to "old class antimicrobials." To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by bla (NDM-1) and bla (OXA-23). In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings. | 2018 | 30574124 |
| 5687 | 7 | 0.9997 | The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance. | 2020 | 32646458 |
| 5683 | 8 | 0.9996 | Association between antimicrobial resistance among Enterobacteriaceae and burden of environmental bacteria in hospital acquired infections: analysis of clinical studies and national reports. BACKGROUND: WHO has named three groups of gram-negative bacteria "our critical antimicrobial resistance-related problems globally". It is thus a priority to unveil any important covariation of variables behind this three-headed epidemic, which has gained alarming proportions in Low Income Countries, and spreads rapidly. Environmental bacteria including Acinetobacter spp. are common nosocomial pathogens in institutions that have high rates of antimicrobial resistance among other groups of gram-negative bacteria. METHODS: Based on two different data sources, we calculated the correlation coefficient (Pearson's r) between pathogenic burden of Acinetobacter spp. and antimicrobial resistance among Enterobacteriaceae in European and African nosocomial cohorts. CLINICAL REPORTS: Database search for studies on nosocomial sepsis in Europe and Africa was followed by a PRISMA-guided selection process. NATIONAL REPORTS: Data from Point prevalence survey of healthcare-associated infections published by European Centre for Disease Prevention and Control were used to study the correlation between prevalence of Acinetobacter spp. and antimicrobial resistance among K. pneumoniae in blood culture isolates. FINDINGS: The two approaches both revealed a strong association between prevalence of Acinetobacter spp. and rates of resistance against 3. generation cephalosporins among Enterobacteriaceae. In the study of clinical reports (13 selected studies included), r was 0.96 (0.80-0.99) when calculated by proportions on log scale. Based on national reports, r was 0.80 (0.56-0.92) for the correlation between resistance rates of K. pneumoniae and proportion of Acinetobacter spp. INTERPRETATION: The critical antimicrobial resistance-related epidemics that concern enteric and environmental gram-negative bacteria are not independent epidemics; they have a common promoting factor, or they are mutually supportive. Further, accumulation of antimicrobial resistance in nosocomial settings depends on the therapeutic environment. Burden of Acinetobacter spp. as defined here is a candidate measure for this dependence. | 2019 | 31372534 |
| 2787 | 9 | 0.9996 | Multiplex Polymerase Chain Reaction/Pooled Antibiotic Susceptibility Testing Was Not Associated with Increased Antibiotic Resistance in Management of Complicated Urinary Tract Infections. OBJECTIVE: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated. METHODS: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12). RESULTS: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, p = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, p = 0.04). CONCLUSION: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted. | 2023 | 37193300 |
| 2253 | 10 | 0.9996 | Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings. | 2024 | 39199988 |
| 2247 | 11 | 0.9996 | Metagenomic identification of pathogens and antimicrobial-resistant genes in bacterial positive blood cultures by nanopore sequencing. Nanopore sequencing workflows have attracted increasing attention owing to their fast, real-time, and convenient portability. Positive blood culture samples were collected from patients with bacterial bloodstream infection and tested by nanopore sequencing. This study compared the sequencing results for pathogen taxonomic profiling and antimicrobial resistance genes to those of species identification and phenotypic drug susceptibility using traditional microbiology testing. A total of 37 bacterial positive blood culture results of strain genotyping by nanopore sequencing were consistent with those of mass spectrometry. Among them, one mixed infection of bacteria and fungi was identified using nanopore sequencing and confirmatory quantitative polymerase chain reaction. The amount of sequencing data was 21.89 ± 8.46 MB for species identification, and 1.0 MB microbial strain data enabled accurate determination. Data volumes greater than or equal to 94.6 MB nearly covered all the antimicrobial resistance genes of the bacteria in our study. In addition, the results of the antimicrobial resistance genes were compared with those of phenotypic drug susceptibility testing for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Therefore, the nanopore sequencing platform for rapid identification of causing pathogens and relevant antimicrobial resistance genes complementary to conventional blood culture outcomes may optimize antimicrobial stewardship management for patients with bacterial bloodstream infection. | 2023 | 38192400 |
| 2250 | 12 | 0.9996 | Prevalence of Antibiotic-Resistant Pathogenic Bacteria and Level of Antibiotic Residues in Hospital Effluents in Selangor, Malaysia: Protocol for a Cross-sectional Study. BACKGROUND: Antimicrobial resistance (AMR) has emerged as a major global public health challenge due to the overuse and misuse of antibiotics for humans and animals. Hospitals are among the major users of antibiotics, thereby having a large contribution to AMR. OBJECTIVE: The aim of this study is to determine the prevalence of antibiotic-resistant pathogenic bacteria and the level of antibiotic residues in the hospital effluents in Selangor, Malaysia. METHODS: A cross-sectional study will be performed in the state of Selangor, Malaysia. Tertiary hospitals will be identified based on the inclusion and exclusion criteria. The methods are divided into three phases: sample collection, microbiological analysis, and chemical analysis. Microbiological analyses will include the isolation of bacteria from hospital effluents by culturing on selective media. Antibiotic sensitivity testing will be performed on the isolated bacteria against ceftriaxone, ciprofloxacin, meropenem, vancomycin, colistin, and piperacillin/tazobactam. The identification of bacteria will be confirmed using 16S RNA polymerase chain reaction (PCR) and multiplex PCR will be performed to detect resistance genes (ermB, mecA, bla(NDM-L), bla(CTX-M), bla(OXA-48), bla(SHV), VanA, VanB, VanC1, mcr-1, mcr-2, mcr-3, Intl1, Intl2, and qnrA). Finally, the level of antibiotic residues will be measured using ultrahigh-performance liquid chromatography. RESULTS: The expected outcomes will be the prevalence of antibiotic-resistant Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter (ESKAPE) bacterial species from the hospital effluents, the occurrence of antibiotic resistance genes (ARGs) from the isolated ESKAPE bacteria, and the level of antibiotic residues that may be detected from the effluent. Sampling has been conducted in three hospitals. Data analysis from one hospital showed that as of July 2022, 80% (8/10) of E. faecium isolates were resistant to vancomycin and 10% (1/10) were resistant to ciprofloxacin. Further analysis will be conducted to determine if the isolates harbor any ARGs and effluent samples are being analyzed to detect antibiotic residues. Sampling activities will be resumed after being suspended due to the COVID-19 pandemic and are scheduled to end by December 2022. CONCLUSIONS: This study will provide the first baseline information to elucidate the current status of AMR of highly pathogenic bacteria present in hospital effluents in Malaysia. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/39022. | 2023 | 37247207 |
| 5284 | 13 | 0.9996 | Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted. | 2019 | 31822712 |
| 1831 | 14 | 0.9996 | Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for bla(CTX-M-15), bla(NDM), bla(KPC) and bla(OXA-48)-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates' rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers' rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes. | 2022 | 35927336 |
| 1959 | 15 | 0.9996 | Prevalence of Multiple Drug-Resistant Bacteria in the Main Campus Wastewater Treatment Plant of Wolaita Sodo University, Southern Ethiopia. Wastewater treatment plants (WWTPs) are important reservoirs for the development of drug resistance and a potential route for the dissemination of antibiotic resistance genes (ARGs) in the environment. One of the most serious challenges in Ethiopia is the widespread emergence of antibiotic resistance among bacterial pathogens. The bacteria were isolated between September 2018 and May 2019 from the main campus of Wolaita Sodo University in Southern Ethiopia. Using an enrichment process and selective media isolation, 380 wastewater treatment plant samples were collected and screened for the presence of various bacterial isolates. Of a total of 380 wastewater treatment samples, 136 were isolated. Positive prevalence was documented in 136 sample isolates of bacteria from six genera. Escherichia coli 34 (8.94%), Salmonella spp. 15 (3.94%), Shigella spp. 32 (8.42%), Staphylococcus aureus 23 (6.05%), Pseudomonas aeruginosa 21 (5.52%), and Proteus spp. 11 (2.89%). The general prevalence of bacterial isolates was assessed, and 136 (37.58%) samples tested positive for culture. Furthermore, isolates were used to determine sensitivity/resistance patterns using the Kirby-Bauer disc diffusion method and the agar well diffusion technique, respectively. Multiple drug resistance isolates and multiple values of the antibiotic resistance index were evaluated and recorded according to the resistant pattern. Some organisms were sensitive to sparfloxacin and tobramycin, while Staphylococcus aureus was sensitive to methicillin and others showed the highest resistance. At least four of the seven antibiotic classes were found to be resistant to multiple drug resistance isolates, and some classes of antibiotics were found to be highly sensitive to these isolates. Multiple antibiotic resistance index values ranged from 0.37 to 0.75, with Salmonella spp., Shigella spp., and Staphylococcus aureus having the highest score values. The current study has shown that some of the bacterial isolates were resistant to common antibiotics. Therefore, it is recommended that the emergence of multiple drug resistance increased rapidly, pathogenic bacteria inappropriate treated wastewater treatment plant systems were continuously contaminated, and bacterial resistance increased day by day as a result of environmental factors. As a result, due to the serious challenges facing the community's health, multiple drug-resistant prevention and control strategies must be implemented. | 2022 | 36466967 |
| 2558 | 16 | 0.9996 | Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats. | 2025 | 39799360 |
| 1961 | 17 | 0.9996 | Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010-2021). Background: The close relationship between humans and petsraises health concerns due to the potential transmission of antimicrobial-resistant (AMR) bacteria and genes. Bacterial otitis is an emerging health problem in dogs, given its widespread prevalence and impact on animal welfare. Early detection of resistance is vital in veterinary medicine to anticipate future treatment challenges. Objective: This study aimed to determine the prevalence of AMR bacteria involved in 12,498 cases of otitis in dogs from the Iberian Peninsula and the evolution of AMR patterns over an 11-year period. Methods: Data was provided by the Veterinary Medicine Department of a large private diagnostic laboratory in Barcelona. Antimicrobial susceptibility testing was performed using the standard disk diffusion method and minimum inhibitory concentration (MIC) testing. Results: The frequency of the principal bacterial agents was 35% Staphylococcus spp. (principally S. pseudointermedius), 20% Pseudomonas spp. (P. aeruginosa), 13% Streptococcus spp. (S. canis), and 11% Enterobacterales (Escherichia coli and Proteus mirabilis). Antimicrobial susceptibility testing revealed P. aeruginosa (among Gram-negatives) and Enterococcus faecalis (among Gram-positives) as the species with the highest AMR to multiple antimicrobial classes throughout the years. According to the frequency and time evolution of multidrug resistance (MDR), Gram-negative bacteria like P. mirabilis (33%) and E. coli (25%) presented higher MDR rates compared to Gram-positive strains like Corynebacterium (7%) and Enterococcus (5%). The AMR evolution also showed an increase in resistance patterns in Proteus spp. to doxycycline and Streptococcus spp. to amikacin. Conclusions: This information can be useful for clinicians, particularly in this region, to make rational antimicrobial use decisions, especially when empirical treatment is common in companion animal veterinary medicine. In summary, improving treatment guidelines is a key strategy for safeguarding both animal and human health, reinforcing the One Health approach. | 2025 | 40298475 |
| 2255 | 18 | 0.9996 | Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. The microbiological quality of drinking water has long been a critical element in public health. Considering the high clinical relevance of Pseudomonas aeruginosa, we examined the filters of household water treatment systems for its presence and characteristics to determine the systems' efficiency in eliminating the bacteria. In total, filters of 50 household water treatment systems were examined. Microbiological and molecular methods were used for the detection and confirmation of P. aeruginosa isolates. Random Amplification of Polymorphic DNA-polymerase chain reaction (RAPD-PCR) was performed to detect similarities and differences among P. aeruginosa isolates. Combined disk (CD) method and double disk synergy test (DDST) were performed to detect metallo-beta-lactamase (MBL)-producing P. aeruginosa isolates. Finally, PCR was performed to detect MBL genes in MBL-producing strains. From the 50 analyzed systems, 76 colonies of P. aeruginosa were identified. In some systems, isolated bacteria from different filters harbored similar genetic profiles, indicating that these isolates may be able to pass through the filter and reach higher filters of the system. Phenotypic tests revealed 7 (9.2%) MBL-producing strains. Two isolates were positive for bla(VIM-1), whereas one isolate was positive for bla(NDM) and bla(IMP-1). The wide distribution of resistant phenotypes and genetic plasticity of these bacteria in household water treatment systems indicate that resistance mechanisms circulate among P. aeruginosa isolates in the environment of the filtration systems. The presence of MBL-producing genes in these systems and P. aeruginosa as a potential reservoir of these resistance genes can be a major concern for public health. | 2019 | 30368151 |
| 1939 | 19 | 0.9996 | Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m(-3) and an average inhalable aerobic bacterial concentration of 73 CFU∙m(-3), with no significant difference (P > 0.05) among the three wards. All isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive strains was mainly TEM gene, and the detection rate was 66.67% (8/12). According to a homology analysis with PFGE, 100% homologous E. coli from the ward at 5 m and 10 m outside the ward in the corridor shared the same drug-resistance spectrum, which further proves that airborne E. coli carrying a drug-resistance gene spreads out of the ward through gas exchange. This leads to biological pollution inside, outside, and around the ward, which poses a direct threat to the health of patients, healthcare workers, and surrounding residents. It is also the main reason for the antibiotic resistance in the hospital environment. More attention should be paid to comprehensive hygiene management in the surrounding environment of hospitals. | 2020 | 32070803 |