Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
224401.0000Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. OBJECTIVE: To investigate the clinical features and outcomes of patients with mechanical ventilation-associated pneumonia (VAP) caused by Acinetobacter baumannii (Ab), and to characterize the drug resistance of pathogenic strains and carbapenem resistance-associated genes. METHODS: Clinical data were collected from the PICU of Shengjing Hospital. Patients who met the diagnostic criteria of VAP and for whom Ab was a pathogen were selected as study participants. The patients were divided into carbapenem-resistant A. baumannii (CRAB) and carbapenem-sensitive A. baumannii (CSAB) groups. The genes closely associated with Ab resistance to carbapenems and the efflux pump-related genes were detected by real-time polymerase chain reaction, and results compared between the two groups. RESULTS: The total mechanical ventilation time and the administration time of antibiotics after a diagnosis of Ab infection were significantly higher in the CRAB group. And the CRAB group strains were only sensitive to amikacin, cephazolin, compound sulfamethoxazole, and tigecycline. Genetic test results indicated that IPM expression was not significantly different between two groups. The OXA-51 and OXA-23 in the CRAB group was markedly higher than that in the CSAB group, while OXA-24 expression was markedly lower. The expression of AdeABC and AdeFGH was significantly greater in the CRAB compared to CSAB group. CONCLUSION: In pediatric patients with VAP caused by Ab infection, the detection rate of CRAB strains is far higher than that of CSAB strains; The abnormal expression of β-lactamase-producing genes (OXA-23, OXA-24, and OXA-51) and efflux pump-related genes (AdeABC and AdeFGH) is closely related to the production of CRAB.202134526127
231310.9997Evaluated gene expressions of Metallo beta lactamase genes GIM and , VIM, SPM in Pseudomonas aeruginosa clinical isolates. Pseudomonas aeruginosa is considered as one of the human health care problems, P. aeruginosa's carbapenem resistance emerges by several different mechanisms, some of which include carbapenems genes. P. aeruginosa's carbapenem resistance is a significant health concern, So this study aims to evaluate MBL gene expressions. The study was conducted at the Department of Microbiology, AL-Mahmoodia Hospital, over one year from January to December 2022. The samples were collected from patients with different clinical sources (Burn, Urine, Wound, Sputum, Ear, and Blood), from different ages while. Samples were collected from three hospitals in Baghdad including Al-Yarmouk Teaching Hospital, AL-Mahmmodiya Hospital, and Child's Central Teaching Hospital. A study analyzed 55 P. aeruginosa strains from various clinical sources, the study utilizes the chemical characterization, VITEK 2 system, 16s rRNA, antibiogram sensitivity tests, antibiotic susceptibility using eight antibiotics, including Amikacin, Ciprofloxacin, Levofloxacin, Imipenem Meropenem, Piperacillin, Cefepim and Aztreonam. The test of bacterial susceptibility revealed that each isolate was highly resistant to piperacillin, which are 96.36%, and lower resistance to Ciprofloxacin, which are 32%. Phenotypic screening carbapenem resistance methods combined the disk synergy test and conventional PCR that were used to detect isolates by using 16 S rRNA. This proves that the bacteria is P. aeruginosa and computed by measuring gene expression of the target genes (GIM, VIM, SPM) by using the real-time PCR, which is employed for twenty-five isolates. The result indicates that the expression level of the VIM gene is highly regulated in carbapenem-resistance isolates compared to control isolates that is 1.00. While the expression level of gene GIM and SPM is downregulated in carbapenem-resistance isolates compared to control isolates that is 6. The carbapenem VIM and GIM, SPM (class B) genes are essential for resistance in P. aeruginosa induced by chromosomal changes that modify membrane permeability efflux pump overexpression for genes. As a result, many studies require for discovering new strategies to reduce the threat to public health through preventing the spread of these isolates via tight infections, control measures, and the reduction of the danger to public health.202337917414
230820.9997Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted.202337307126
236130.9997Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. OBJECTIVE: This study aimed to compare the identification efficiency of metagenome next generation sequencing (mNGS) and traditional methods in detecting pathogens in patients with severe bacterial pneumonia (BP) and further analyze the drug resistance of common pathogens. METHODS: A total of 180 patients with severe BP who were admitted to our hospital from June 2017 to July 2020 were selected as the research objects. Alveolar lavage fluid from the patients were collected, and pathogens were detected by the mNGS technology and traditional etiological detection technology. Common pathogens detected by mNGS were tested for the drug sensitivity test. The difference between mNGS and traditional detection method in the identification of pathogenic bacteria in severe BP patients was compared, and the distribution characteristics and drug resistance of pathogenic bacteria were analyzed. RESULTS: The positive rate of mNGS detection was 92.22%, which was significantly higher than that of the traditional culture method (58.33%, P < 0.05). 347 strains of pathogenic bacteria were detected by mNGS, including 256 strains of Gram-negative bacteria (G(-)), 89 strains of Gram-positive bacteria (G(+)), and 2 strains of fungi. Among G(-) bacteria, Acinetobacter baumannii had higher resistance to piperacillin/tazobactam, ceftazidime, imipenem, levofloxacin, amikacin, ciprofloxacin, gentamicin, and the lowest resistance to tigecycline. The resistance of Klebsiella pneumoniae to piperacillin/tazobactam and ceftazidime was higher. Pseudomonas aeruginosa had low resistance to all the drugs. Escherichia coli had high drug resistance to most drugs, and the drug resistant rates to cefoperazone/sulbactam, piperacillin/tazobactam, ceftazidime, imipenem, and gentamicin were all more than 50.00%. G(+) bacteria had high resistance to penicillin, azithromycin, amoxicillin and levofloxacin, and amoxicillin and levofloxacin had high resistance, up to 100.00%. CONCLUSION: mNGS has high sensitivity for the identification of pathogenic bacteria in patients with BP. G(-) bacteria were the main pathogens of BP, but both G(-) and G(+) bacteria had high resistance to a variety of antibacterial drugs.202236262997
225240.9997Antimicrobial resistance of 3 types of gram-negative bacteria isolated from hospital surfaces and the hands of health care workers. BACKGROUND: There has been an increased focus in recent years on antimicrobial resistance of bacteria isolated from clinical samples. However, resistance of bacteria from hospital environments has been less frequently investigated. METHODS: According to hygienic standard for disinfection in hospitals, samples were collected from hospital inanimate surfaces and the hands of health care workers after daily cleaning. An automatic microorganism analyzer was used to identify bacteria and test for antimicrobial susceptibility. Polymerase chain reaction was used to detect antimicrobial resistance genes. RESULTS: The detection rate of bacteria in general wards was significantly higher than that in intensive care units. The isolates were predominantly gram-negative (GN) bacteria, with Pseudomonas aeruginosa, Enterobacter cloacae, and Klebsiella pneumoniae being the most common. P aeruginosa isolates from other surfaces were much higher than those from medical instruments. E cloacae was isolated more frequently from the hands of other staff than medical staff. Most P aeruginosa and K pneumoniae were resistant to sulfonamides and β-lactam antimicrobials. Only 1 strain of P aeruginosa and 1 strain of K pneumoniae showed multiple antimicrobials resistance. CONCLUSIONS: The GN bacteria isolated from hospital environments demonstrate variable resistance to antimicrobials.201728780198
231750.9997Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. BACKGROUND: Acinetobacter baumannii (A. baumannii) is one of the most important bacteria causing nosocomial infections worldwide. Over the past few years, several strains of A. baumannii have shown antibiotic resistance, which may be due to the activity of efflux pumps. This study was aimed to detect AdeFG efflux pump genes and their contribution to antibiotic resistance in A. baumannii clinical isolates. METHODS: A total of 200 A. baumannii clinical isolates were collected from clinical specimens of ulcers, pus, sputum, and blood. All isolates were identified using standard biochemical tests. After identifying and cleaving the genome by boiling, PCR was performed on samples using specific primers. The antimicrobial susceptibility patterns were determined by disk diffusion, with and without CCCP efflux pump inhibitor were determined according to CLSI guidelines. RESULTS: We identified 60 clinical isolates of A. baumannii using biochemical differential tests. Identification of all A. baumannii isolates was confirmed by blaOXA-51-like PCR. According to the results of our study, 98.37% of A. baumannii isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. PCR results indicated that all 60 A. baumannii isolates contained the AdeF and 76.66% contained AdeG. CONCLUSION: the results of this study demonstrated that most of the A. baumannii isolates contained AdeF and AdeG efflux pump genes, and more than 98% of the isolates were resistant to ciprofloxacin, norfloxacin, and levofloxacin. This reflected the significant contribution of efflux pumps to the development of resistance to these antibiotics.202032582800
230360.9997Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593
225370.9997Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings.202439199988
231980.9997Bacterial resistance to antibiotics and associated factors in two hospital centers in Lebanon from January 2017 to June 2017. GENERAL PRESENTATION: Resistance of bacteria to antibiotics is a universal problem. With the increase in the rate of resistance, knowledge of susceptibility patterns is essential to guide antimicrobial therapy. In Lebanon, many studies investigated this subject. OBJECTIVES: Determine the rate of multidrug and extremely drug-resistant bacteria as well as the patterns of resistance and the factors associated with this resistance. MATERIALS AND METHODS: A cross-sectional study was performed using the cultures from the labs of two university hospitals in Lebanon. Bacteria were divided into four groups: sensitive, multidrug-, extremely- and pan-drug resistant. Patient information was obtained from the medical records. Using the SPSS software for Windows, version 20 (IBM, Armonk, USA), the frequency of the bacteria, their susceptibilities and the association of resistance with seven potential factors (age, gender, diabetes mellitus, cancer, chronic kidney disease, dialysis, previous hospitalization) were studied. RESULTS: The frequency of resistance was 53.7% (39.9% multidrug-resistant and 13.8% extremely drug-resistant). Escherichia coli strains were mostly susceptible to carbapenems and tigecycline; and nitrofurantoine and fosfomycin in urine. Pseudomonas and Acinetobacter species were mostly sensitive to colistin. Klebsiella species were mostly susceptible to amikacin and carbapenems. MRSA rates were 34.8%. Association was seen between the resistant bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. CONCLUSION: Resistance of bacteria to drugs in Lebanon is increasing. Significant association is seen between these bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization.202034368694
231590.9997The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Infections represent a major complication for burn-injured patients. The aim of this study was to highlight the changes in the incidence and antimicrobial resistance of bacterial strains isolated from burn patients, at the end of the COVID-19 pandemic, in relation to the antibiotics used during the pandemic. A comparative analysis of the demographic data and the microorganisms identified in the clinical samples of two groups of burn patients admitted to a university hospital in Romania was carried out. The first group consisted of 48 patients and the second of 69 patients, hospitalized in January-August 2020 and 2023, respectively. The bacterial species with the highest incidence were S. aureus, A. baumannii, Pseudomonas spp. The significant changes between 2023 and 2020 are reflected in the increase in the frequency of non-fermentative Gram-negative bacteria, especially S. maltophilia, and the increase in antimicrobial resistance of Pseudomonas and Klebsiella spp. Klebsiella spp. did not change in frequency (7%), but there was a significant increase in the incidence of K. pneumoniae strains with pan-drug resistant behaviour to antibiotics (40%), including colistin. The phenomenon can be explained by the selection of specimens carrying multiple resistance genes, as a result of antibiotic treatment during the COVID-19 period. The post-pandemic antimicrobial resistance detected in burn patients indicates the need for permanent surveillance of the resistance trends, primarily due to the limited therapeutic options available for these patients.202439334997
2309100.9997Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.202439139624
5790110.9997Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. BACKGROUND & OBJECTIVE: Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. METHODS: Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. RESULTS: It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). CONCLUSION: Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical.202439687449
5787120.9997Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes.202134550209
2304130.9997Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. BACKGROUND: The misuse of antimicrobial agents increases drug resistance in bacteria. METHODS: The correlation between antimicrobial agent consumption and related resistance in the Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis was analyzed during the period 2003-2011. RESULTS: Among these five bacteria, overall E. coli and K. pneumoniae were more commonly isolated from bloodstream than the other species. Regarding Enterobacteriaceae, E. coli and K. pneumoniae showed annual increases of resistance to the tested antimicrobial agents; conversely, P. mirabilis exhibited reduced resistance to cefuroxime, ceftriaxone and cefepime. In contrast to the relatively low antimicrobial resistance in P. aeruginosa, A. baumannii revealed high resistance, which was over 85% resistant rate to the tested antimicrobial agents and over 80% carbapenem resistance in 2011. E. coli, K. pneumoniae, and P. mirabilis differed in development of antimicrobial resistance after consumption of the antimicrobial agents. K. pneumoniae developed resistance to all antimicrobial groups, whereas resistance in P. mirabilis was not related to any antimicrobial consumption. P. aeruginosa developed resistance to β-lactam antimicrobials and aminoglycosides, whereas A. baumanii developed resistance to carbapenems after their use. CONCLUSION: The development of antimicrobial resistance was related to antimicrobial agents and bacterial species.201524863496
2243140.9997Clinical and metagenomic predicted antimicrobial resistance in pediatric critically ill patients with infectious diseases in a single center of Zhejiang. BACKGROUND: Antimicrobial resistance (AMR) poses a significant threat to pediatric health; therefore, precise identification of pathogens as well as AMR is imperative. This study aimed at comprehending antibiotic resistance patterns among critically ill children with infectious diseases admitted to pediatric intensive care unit (PICU) and to clarify the impact of drug-resistant bacteria on the prognosis of children. METHODS: This study retrospectively collected clinical data, identified pathogens and AMR from 113 children's who performed metagenomic next-generation sequencing for pathogen and antibiotic resistance genes identification, and compared the clinical characteristic difference and prognostic effects between children with and without AMR detected. RESULTS: Based on the presence or absence of AMR test results, the 113 patients were divided into Antimicrobial resistance test positive group (AMRT+, n = 44) and Antimicrobial resistance test negative group (AMRT-, n = 69). Immunocompromised patients (50% vs. 28.99%, P = 0.0242) and patients with underlying diseases (70.45% vs. 40.58%, P = 0.0019) were more likely to develop resistance to antibiotics. Children in the AMRT + group showed significantly increased C-reaction protein, score of pediatric sequential organ failure assessment and pediatric risk of mortality of children and longer hospital stay and ICU stay in the AMRT + group compared to the AMRT+- group (P < 0.05). Detection rate of Gram-negative bacteria was significantly higher in the AMRT + group rather than Gram-positive bacteria (n = 45 vs. 31), in contrast to the AMRT- group (n = 10 vs. 36). Cephalosporins, β-lactams/β-Lactamase inhibitors, carbapenems and sulfonamides emerged as the most common types of drug resistance in children. Resistance rates to these antibiotics exhibited considerable variation across common pathogens, including Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. CONCLUSIONS: The development of drug resistance in bacteria will significantly affect the prognosis of patients. The significant differences in drug resistance of common pathogenic bacteria indicate that identification of drug resistance is important for the rational use of antibiotics and patient prognosis.202439707302
2318150.9997Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected.202032944333
2210160.9997Beyond Culture: Real-Time PCR Performance in Detecting Causative Pathogens and Key Antibiotic Resistance Genes in Hospital-Acquired Pneumonia. Introduction: The rise in hospital-acquired pneumonia (HAP) due to antibiotic-resistant bacteria is increasing morbidity, mortality, and inappropriate empirical antibiotic use. This prospective research aimed to evaluate the performance of a real-time polymerase chain reaction (PCR) assay for detecting causative microorganisms and antibiotic-resistance genes from respiratory specimens compared to traditional methods. Additionally, we aimed to determine the molecular epidemiology of antibiotic resistance genes among HAP patients at The University of Jordan hospital. Methods: Lower respiratory tract samples were collected from HAP patients, including those with ventilator-associated pneumonia (VAP), between May 2024 and October 2024. Clinical data from the medical files were used to collect and analyze demographic and clinical information, including clinical outcomes. Real-time PCR was run to detect causative microbes and antibiotic resistance genes. Results: Among 83 HAP patients (median age 63, 61.45% male), 48.15% died. Culture identified Klebsiella (25.53%), Acinetobacter (22.34%), and Candida (24.47%) as the most common pathogens, while qPCR showed higher detection rates, including for A. baumannii (62.20%, p = 0.02) and K. pneumoniae (45.12%, p < 0.001). Carbapenem resistance was high; A. baumannii showed 100% resistance to most antibiotics except colistin (92.31%). The resistance genes ndm (60%) and oxa-48 (58.46%) were frequently detected and significantly associated with phenotypic resistance (p < 0.001). The qPCR identified resistance genes in all carbapenem-resistant cases. No gene significantly predicted mortality. Conclusions: Real-time PCR diagnostic technique combined with epidemiology of antibiotic resistance genes data may be a rapid and effective tool to improve HAP management. Large, multicenter studies are needed in the future to validate the performance of real-time PCR in HAP diagnosis, and appropriate management is also required.202541009915
5785170.9997Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. Biofilm formation ranks first among the resistance and virulence factors crucial in forming ESKAPE pathogens. Once biofilm is formed, treating the infection with existing drugs is often futile. Therefore, in this study, resistant ESKAPE pathogens were isolated from intensive care units and sent to Atatürk University Yakutiye Research Hospital Microbiology Laboratory. This study investigated the biofilm formation and molecular characterization of resistant ESKAPE pathogens isolated from intensive care units. The bacteria's biofilm formation abilities, genes responsible for biofilm formation, and resistance characteristics were identified. The effect of boric acid (BA) on resistance and bacterial genes was evaluated by a bacterial infection cell culture model. The highest biofilm formation was observed in Escherichia coli, Enterococcus spp., and Pseudomonas aeruginosa Enterococcus spp. isolates showed the vanA gene in 14.6% and the vanC gene in 61% of the samples. Among Staphylococcus spp. isolates, 48.3% were MSSA, 34.5% were MRCNS, and 17.2% were MRSA. The KPC gene was detected in 50%, the OXA-48 gene in 40%, and the NDM gene in 15% of the isolates. In P. aeruginosa, the LasI and LasR quorum sensing system genes were found in 38.5% and 30.8% of the isolates, respectively. In E. coli isolates, OXA-48 was present in 35%, KPC in 31.7%, and TEM in 12.5%. BA demonstrated significant activity against ESKAPE pathogens. The combined antimicrobial activity of boron compounds showed a decrease in the expression level of the resistance gene. It will be promising for preventing hospital-associated infections.202540025436
1679180.9997Analysis of ESKAPE pathogens in clinical isolates in a tertiary care hospital in China from 2018 to 2023. The widespread use of antimicrobial agents correlated with the increasing incidence of nosocomial infections and bacterial antibiotic resistance. These have become major challenges in the prevention and control of hospital-acquired infections worldwide. The aims of this study were to analyze the distribution and characteristics of ESKAPE pathogenic bacteria and their antibiotic resistance profile among clinical isolates from a tertiary hospital in China from 2018 to 2023. The results showed that a total of 20,472 non-duplicated pathogenic bacteria were isolated from clinical specimens in this hospital between 2018 and 2023, of which the top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii. In case of E. coli the main detected resistance genes were blaCTX-M, blaTEM and blaOXA. K. pneumoniae mainly carried blaOXA, blaKPC and blaNDM genes. P. aeruginosa was mainly positive for blaOXA, AmpC type beta-lactamases and blaVIM genes. A. baumannii mainly carried ArmA, blaTEM and cas3 genes. S. aureus was mainly positive for mecA, erm(C) and erm(A) genes. In this study, we have found that the antibiotic resistance of common pathogens from clinical isolates in a tertiary hospital in China in the past 6 years is severe, and A. baumannii was particularly a prominent pathogen. There is an urgent need to strengthen the prevention and control of nosocomial infections and antimicrobial drug management in order to curb the spread of multidrug-resistant bacteria.202540522743
5784190.9997Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. BACKGROUND: Notable emergence of multidrug-resistant bacteria has become increasingly problematic worldwide. Most patients with cystic fibrosis (CF) suffer from chronic persistent infections with frequent occurrence of acute exacerbations. Routine screening of bacterial strains, epidemiological characteristics, and resistance patterns are particularly useful for patient management and maintenance of infection control procedures. METHODS: In this study, 43 pharyngeal samples were taken from patients with CF. Microbiological bacterial culture and identification, antimicrobial susceptibility testings, biofilm formation, including minimum biofilm eradication concentration (MBEC) and PCR for detecting resistance genes were performed. RESULTS: All samples were positive for bacterial growth. The predominant species were Staphylococcus aureus (41.86%; n = 18) and Pseudomonas aeruginosa (39.53%; n = 17). 30% of isolated bacteria were multidrug-resistant, resisting high concentrations of tested antibiotics. Among the 42 biofilm-forming isolates, 23.8% (n = 10) were strong biofilm formers. The occurance of resistance genes varied with blaKPC detected in 71% (n = 17) of all Gram-negative isolates and mecA found in 61% (n = 11) of all S. aureus strains. CONCLUSIONS: The majority of isolated bacteria were S. aureus and P. aeruginosa. The high frequency of antimicrobial resistance, the presence of resistance genes, and biofilm formation highlight the challenge in treatment and infection control measures in patients with CF.KEY MESSAGESStaphylococcus aureus and Pseudomonas aeruginosa are the most prevalent pathogens found in patients with CF in Jordan.Detection of antimicrobial resistance genes in patients with CF confirms that antimicrobial resistance patterns must always be monitored.Biofilm formation significantly increases the tolerance of bacteria to antimicrobial agents.202236264155