Rapid detection of gram-negative antimicrobial resistance determinants directly from positive blood culture broths using a multiplex PCR system. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
223001.0000Rapid detection of gram-negative antimicrobial resistance determinants directly from positive blood culture broths using a multiplex PCR system. Currently available rapid blood culture diagnostics detect few gram-negative resistance determinants, limiting their clinical utility. We prospectively evaluated the prototype BIOFIRE FILMARRAY Antimicrobial Resistance (AMR) Panel, a rapid multiplex PCR test that detects 31 AMR genes, on residual positive blood culture broths from patients with gram-negative bacteremia due to five target organisms at a New York City hospital. Predicted antimicrobial resistance based on the AMR Panel was compared to results from broth microdilution testing of bloodstream isolates recovered in culture. A simulated stewardship study assessed opportunities for the optimization of therapy if the AMR Panel results had been available for patient care in real time. We enrolled 148 patients with gram-negative bacteremia (Escherichia coli, n = 75; Klebsiella pneumoniae, n = 44; Pseudomonas aeruginosa, n = 17; Enterobacter cloacae complex, n = 9; and Acinetobacter baumannii, n = 3). The sensitivity of the AMR Panel for predicting antimicrobial resistance was ≥90% for 10/14 antimicrobial agents in E. coli and for 10/16 agents in K. pneumoniae. Specificity was ≥90% for 15/17 agents in E. coli and for all 16 agents in K. pneumoniae. Performance for other organisms was poor. For E. coli or K. pneumoniae bacteremia, use of the AMR Panel could have led to earlier escalation or de-escalation of β-lactam therapy in a majority of patients compared to what actually occurred. This study demonstrates that a rapid multiplex PCR test with a large menu of AMR genes can be applied to positive blood culture broths to rapidly predict resistance to frontline antimicrobial agents in patients with E. coli or K. pneumoniae bacteremia.IMPORTANCEPatients with gram-negative bacteremia require urgent treatment with antimicrobial agents that are effective against their infecting pathogen. However, conventional laboratory work-up of blood cultures takes days to yield results, and during this time, patients may receive ineffective therapies. We evaluated the prototype BIOFIRE FILMARRAY AMR Panel, an assay that detects 31 genes in gram-negative bacteria that confer resistance to β-lactams, fluoroquinolones, and aminoglycosides in approximately 1 hour, directly from positive blood culture broths, and compared these results to antimicrobial susceptibility testing of isolates recovered in culture. We found that the AMR Panel accurately predicted resistance in Escherichia coli and Klebsiella pneumoniae to most antimicrobials. Moreover, if results from this assay had been used for patient care, there would have been opportunities to optimize antimicrobial prescribing more quickly than using conventional methods. These data demonstrate how novel molecular assays could optimize care for patients with E. coli and K. pneumoniae bacteremia.202541117625
222810.9999Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.201931849899
223520.9998Nanosphere's Verigene(®) Blood Culture Assay to Detect Multidrug-Resistant Gram-Negative Bacterial Outbreak: A Prospective Study on 79 Hematological Patients in a Country with High Prevalence of Antimicrobial Resistance. Infections are a major cause of morbidity and mortality in hematological patients. We prospectively tested a new molecular assay (Verigene(®)) in 79 consecutive hematological patients, with sepsis by gram-negative bacteria. A total of 82 gram-negative microorganisms were isolated by blood cultures, of which 76 cases were mono-microbial. Considering the bacteria detectable by the system, the concordance with standard blood cultures was 100%. Resistance genes were detected in 20 of the isolates and 100% were concordant with the phenotypic antibiotic resistance. Overall, this new assay correctly identified 66/82 of all the gram-negative pathogens, yielding a general sensitivity of 80.5%, and providing information on genetic antibiotic resistance in a few hours. This new molecular assay could ameliorate patient management, resulting in a more rational use of antibiotics.201934595420
222930.9998A pentaplex real-time PCR assay for rapid identification of major beta-lactamase genes KPC, NDM, CTX, CMY, and OXA-48 directly from bacteria in blood. Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3-5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes (Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia.Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States.Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40-60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes.Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay.Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4-8 c.f.u. ml(-1).Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.202134878374
167440.9998Bloodstream infections caused by multidrug-resistant gram-negative bacteria: epidemiological, clinical and microbiological features. BACKGROUND: Bloodstream infections (BSI) are associated with high morbidity and mortality. This scenario worsens with the emergence of drug-resistant pathogens, resulting in infections which are difficult to treat or even untreatable with conventional antimicrobials. The aim of this study is to describe the epidemiological aspects of BSI caused by multiresistant gram-negative bacilli (MDR-GNB). METHODS: We conducted a laboratory-based surveillance for gram-negative bacteremia over a 1-year period. The bacterial isolates were identified by MALDI-TOF/MS and the antimicrobial susceptibility testing was performed by VITEK®2. Resistance genes were identified through PCR assays. RESULTS: Of the 143 patients, 28.7% had infections caused by MDR-GNB. The risk factors for MDR bacteremia were male sex, age ≥ 60, previous antimicrobial use, liver disease and bacteremia caused by K. pneumoniae. K. pneumoniae was the most frequently observed causative agent and had the highest resistance level. Regarding the resistance determinants, SHV, TEM, OXA-1-like and CTX-M-gp1 were predominant enzymatic variants, whereas CTX-M-gp9, CTX-M-gp2, KPC, VIM, GES, OXA-48-like, NDM and OXA-23-like were considered emerging enzymes. CONCLUSIONS: Here we demonstrate that clinically relevant antibiotic resistance genes are prevalent in this setting. We hope our findings support the development of intervention measures by policy makers and healthcare professionals to face antibiotic resistance.201931296179
222650.9998Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Bloodstream infection (BSI) is a critical medical emergency associated with a high mortality rate. Rapid and accurate identification of the causative pathogen and the results of antimicrobial susceptibility testing are crucial for initiating appropriate antimicrobial therapy. The aim of this study was to evaluate the performance of a new rapid PCR Molecular Mouse System (MMS) for the identification of Gram-negative bacteria (GNB) and GNB resistance genes directly from a positive blood culture (BC). The validation of these rapid multiplex assays was carried out in a real hospital setting. A total of 80 BSI episodes were included in our study and the results were compared with culture-based methods. BC samples in which GNB had previously been detected microscopically and which originated from different hospital wards were analysed. The MMS GNB identification assay achieved a sensitivity of 98.7% and a specificity of 100% for the covered pathogens. In one BC sample, Klebsiella aerogenes was identified at the family level (Enterobacteriaceae) with MMS. However, in three polymicrobial samples, MMS identified bacteria that were not detected by culture-based methods (Klebsiella pneumoniae, K. aerogenes and Stenotrophomonas maltophilia). MMS also showed excellent overall performance in the detection of GNB resistance markers (100% sensitivity and 100% specificity). The type of extended-spectrum beta-lactamase (ESBL) resistance gene identified correctly with MMS was CTX-M-1/9 (n = 17/20), alone or in combination with SHV-type β-lactamase or with the different types of carbapenemase genes. MMS detected one carbapenemase gene of each type (KPC, NDM and OXA-23) and six OXA-48 genes. In addition, the colistin resistance gene mcr-1 was detected in one positive BC with Escherichia coli (E. coli). The time to result was significantly shorter for MMS than for routine culture methods. A retrospective analysis of the patients' medical records revealed that a change in empirical antimicrobial therapy would have been made in around half of the patients following the MMS results. These results support the use of MMS as a valuable complement to conventional culture methods for more rapid BSI diagnosis and adjustment of empirical therapy.202540142509
222760.9998Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing Gram-negative bacteria in the oral cavity. Prophylactic administration of broad-spectrum antibiotics in surgery can change the oral microbiome and induce colonization of oral cavity with Gram-negative bacteria including multidrug (MDR) or extensively drug resistant (XDR) organisms which can lead to lower respiratory tract infections. The aim of the study was to analyse the Gram-negative isolates obtained from oral cavity of the mechanically ventilated patients in ICUs, after prophylactic application of antibiotics and their resistance mechanisms and to compare them with the isolates obtained from tracheal aspirates from the same patients. The antibiotic susceptibility was determined by broth dilution method. PCR was applied to detect genes encoding β-lactamases. Marked diversity of Gram-negative bacteria and resistance mechanisms was found. High resistance rates and high rate of bla(CTX-M) and carbapenemase encoding genes (bla(VIM-1) , bla(OXA-48) ) were found among Klebsiella pneumoniae. Pseudomonas aeruginosa was found to harbour bla(VIM) and in one strain bla(PER-1) gene, whereas Acinetobacter baumannii produced OXA-23-like and OXA-24/40-like oxacillinases and was XDR in all except one case. All XDR isolates belong to international clonal lineage II (IC II). The main finding of the study is that the prophlylactic application of antibiotics in surgery intensive care units (ICUs) is associated with the colonization of oral cavity and lower respiratory tract with Gram-negative bacteria. The identity of Gram-negative bacteria in oral cavity reflected those found in endotracheal aspirates leading to conclusion that oral swab as non-invasive specimen can predict the colonization of lower respiratory tract with resistant Gram-negative organisms and the risk for development of ventilator-associated pneumonia.202133896011
230870.9998Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted.202337307126
167680.9998Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537
222590.9998Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria.201930857832
2234100.9998Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BACKGROUND: Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. METHODS: Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. RESULTS: We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. CONCLUSIONS: qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy.201627585633
1675110.9998Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya. BACKGROUND: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening. Surveillance of bacterial infections in ICUs and drug resistance will help to understand the magnitude of the problem it poses and inform response strategies. We assessed bacterial infections in ICU setting by identifying prevalent Gram-negative bacterial species and characterized their antibiotic susceptibility patterns. METHODS: Cross-sectional samples collected from Kenyatta National Hospital ICU between January and June 2021 were cultured and phenotypic identification of culture-positive samples performed using VITEK 2. Antibiotic susceptibility patterns were determined based on Antimicrobial Susceptibility Testing (AST) results. Cephalosporin-resistant Gram-negative bacteria were assessed by PCR to detect the presence of ESBL genes including ( (bla) CTX-M, (bla) SHV, (bla) TEM, (bla) OXA). RESULTS AND DISCUSSION: Out of the 168 Gram-negative isolates, Acinetobacter baumanii was the most abundant (35%). Other isolates that were present at frequencies more than 15% are Klebsiella pneumoniae and Escherichia. coli. A. baumaniii is known to be a notorious bacterium in ICU due to its multidrug resistance nature. Indeed, A. baumanii isolates from Kenyatta National Hospital showed significantly high level of phenotypic resistance. Concordant with the high level of phenotypic resistance, we found high carriage of the ESBL genes among the isolates analysed in this study. Moreover, majority of isolates harboured all the four ESBL genes. CONCLUSION: A high rate of phenotypic and genetic resistance was detected among the tested isolates. Resistance to cephalosporins was primarily driven by acquisition of the ESBL genes. The high prevalence rate of ESBL genes in ICU bacterial isolates shown in this study has a important implication for ICU patient management and general antibiotics use.202339850338
1699120.9998Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BACKGROUND: This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS: 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS: ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS: If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system.202439375619
2252130.9998Antimicrobial resistance of 3 types of gram-negative bacteria isolated from hospital surfaces and the hands of health care workers. BACKGROUND: There has been an increased focus in recent years on antimicrobial resistance of bacteria isolated from clinical samples. However, resistance of bacteria from hospital environments has been less frequently investigated. METHODS: According to hygienic standard for disinfection in hospitals, samples were collected from hospital inanimate surfaces and the hands of health care workers after daily cleaning. An automatic microorganism analyzer was used to identify bacteria and test for antimicrobial susceptibility. Polymerase chain reaction was used to detect antimicrobial resistance genes. RESULTS: The detection rate of bacteria in general wards was significantly higher than that in intensive care units. The isolates were predominantly gram-negative (GN) bacteria, with Pseudomonas aeruginosa, Enterobacter cloacae, and Klebsiella pneumoniae being the most common. P aeruginosa isolates from other surfaces were much higher than those from medical instruments. E cloacae was isolated more frequently from the hands of other staff than medical staff. Most P aeruginosa and K pneumoniae were resistant to sulfonamides and β-lactam antimicrobials. Only 1 strain of P aeruginosa and 1 strain of K pneumoniae showed multiple antimicrobials resistance. CONCLUSIONS: The GN bacteria isolated from hospital environments demonstrate variable resistance to antimicrobials.201728780198
2303140.9997Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593
2233150.9997Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended.201829086343
2205160.9997Five-year period evaluation of isolated agents and their resistance profiles in intensive care unit patients with malignancy. INTRODUCTION: Patients treated in the intensive care unit (ICU) are usually patients who deteriorated health condition and could have longer hospital stay compared to other patients. Hospital infections are more common in ICU patients. The aim of this study was to evaluate the bacteria and treatment resistance profiles isolated from clinical specimens sent for hospital infections in ICU patients between January 1, 2014 and December 31, 2018. METHODOLOGY: Bacteria isolated from various clinical samples sent for hospital infections in hospitalized patients in the Anesthesia and Reanimation Intensive Care Unit were retrospectively analyzed. RESULTS: Culture positivity was detected in 547 of the sent clinical samples. Eighty Gram-positive bacteria, 389 Gram-negative bacteria and 78 fungi infection were identified in a total of 547 positive cultures. In Gram-positive bacteria, 4 MRSA, 6 VRE and 30 MRCoNS were identified as resistant strains. In Gram-negative bacteria, Acinetobacter spp. was the most culture positive strain with the number of 223. Carbapenem resistance was found in 258 of the Gram-negative bacteria and ESBL positivity was found in 44 of the Gram-negative bacteria strains. CONCLUSIONS: Gram-negative bacteria were the most frequently isolated strain in samples. Recently, colistin resistance has been increasing in Acinetobacter spp. and the increase in carbapenemase enzyme in Escherichia coli, Pseudomonas and Klebsiella species has increased resistance to carbapenems. Knowing the microorganisms that grow in ICUs and their antibiotic resistance patterns may help to prevent contamination of resistant microorganisms by both appropriate empirical antibiotic treatment and more isolation as well as general hygiene standard precautions.202032903237
2217170.9997MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. BACKGROUND: Antibiotic resistance in bacteria leads to massive health problems. Incidence of carbapenem and multidrug resistance in Gram-negative bacteria are increasing globally and turn out to be a very urgent challenge in health care. Resistant bacteria play an important clinical role during hospital outbreaks as well as in sepsis. Rapid diagnostic tests are necessary to provide immediate information for antimicrobial treatment and infection control measures. METHODS: Our mass spectrometry-based assay was validated with 63 carbapenemase-producing Gram-negative bacterial isolates, and 35 carbapenem-resistant Gram-negative species with no carbapenemase production. These were analyzed from solid culture media and positive blood culture vials. After 4 h of incubation the carbapenemase products were analyzed with the MALDI-TOF MS. All the isolates were genotyped for carbapenemase genes by PCR and sequencing. RESULTS: For culture isolates the concordance of hydrolysis assay to genetic results was 98 % for OXA variants, KPC, VIM, IMP, GIM, and NDM. In contrast, only 14 of 29 Acinetobacter baumannii isolates carrying the OXA and NDM genes could be identified from blood culture. However, from blood culture vials our method allowed the detection of carbapenemases in 98 % of Pseudomonas and Enterobacteriaceae isolates harboring different genes. CONCLUSIONS: This MALDI-TOF MS-based assay permitted the detection of carbapenemases either from solid culture media (98-100 %) or blood culture vials (96 %) for all non-A. baumannii isolates within 4 h. In case of A. baumannii isolates the assay was highly sensitive for the detection of carbapenemases directly from solid culture media.201626839024
2304180.9997Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. BACKGROUND: The misuse of antimicrobial agents increases drug resistance in bacteria. METHODS: The correlation between antimicrobial agent consumption and related resistance in the Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis was analyzed during the period 2003-2011. RESULTS: Among these five bacteria, overall E. coli and K. pneumoniae were more commonly isolated from bloodstream than the other species. Regarding Enterobacteriaceae, E. coli and K. pneumoniae showed annual increases of resistance to the tested antimicrobial agents; conversely, P. mirabilis exhibited reduced resistance to cefuroxime, ceftriaxone and cefepime. In contrast to the relatively low antimicrobial resistance in P. aeruginosa, A. baumannii revealed high resistance, which was over 85% resistant rate to the tested antimicrobial agents and over 80% carbapenem resistance in 2011. E. coli, K. pneumoniae, and P. mirabilis differed in development of antimicrobial resistance after consumption of the antimicrobial agents. K. pneumoniae developed resistance to all antimicrobial groups, whereas resistance in P. mirabilis was not related to any antimicrobial consumption. P. aeruginosa developed resistance to β-lactam antimicrobials and aminoglycosides, whereas A. baumanii developed resistance to carbapenems after their use. CONCLUSION: The development of antimicrobial resistance was related to antimicrobial agents and bacterial species.201524863496
5046190.9997Molecular mechanisms of colistin- and multidrug-resistance in bacteria among patients with hospital-acquired infections. AIM: The increasing burden of resistance in Gram-negative bacteria (GNB) is becoming a major issue for hospital-acquired infections. Therefore, understanding the molecular mechanisms is important. METHODOLOGY: Resistance genes of phenotypically colistin-resistant GNB (n = 60) were determined using whole genome sequencing. Antimicrobial susceptibility patterns were detected by Vitek®2 & broth microdilution. RESULTS: Of these phenotypically colistin-resistant isolates, 78% were also genetically resistant to colistin. Activation of efflux pumps, and point-mutations in pmrB, and MgrB genes conferred colistin resistance among GNB. Eight different strains of K. pneumoniae were identified and ST43 was the most prominent strain with capsular type-specific (cps) gene KL30. DISCUSSION: These results, in combination with rapid diagnostic methods, will help us better advice appropriate antimicrobial regimens.202337753358