# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2222 | 0 | 1.0000 | Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis. Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. | 2016 | 27021662 |
| 2219 | 1 | 0.9998 | Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria. | 2012 | 22878252 |
| 2223 | 2 | 0.9998 | Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. To prevent the spread of carbapenemase-producing bacteria, a fast and accurate detection of patients carrying these bacteria is extremely important. The Check-Direct CPE assay (Check-Points, Wageningen, The Netherlands) is a new multiplex real-time PCR assay, which has been developed to detect and differentiate between the most prevalent carbapenemase genes encountered in Enterobacteriaceae (blaKPC, blaOXA-48, blaVIM, and blaNDM) directly from rectal swabs. Evaluation of this assay using 83 non-duplicate isolates demonstrated 100% sensitivity and specificity and the correct identification of the carbapenemase gene(s) present in all carbapenemase-producing isolates. Moreover, the limit of detection (LoD) of the real-time PCR assay in spiked rectal swabs was determined and showed comparable LoDs with the ChromID CARBA agar. With an excellent performance on clinical isolates and spiked rectal swabs, this assay appeared to be an accurate and rapid method to detect blaKPC, blaOXA-48, blaVIM, and blaNDM genes directly from a rectal screening swab. | 2013 | 24135412 |
| 2218 | 3 | 0.9998 | Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates. BACKGROUND: Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). METHODS: 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. RESULTS: Among the carbapenem-resistant isolates the genes bla (KPC), bla (VIM), bla (NDM) or bla (OXA) were detected. Both RT-PCR assays detected all bla (KPC), bla (VIM) and bla (NDM) in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. CONCLUSION: The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii. | 2017 | 28693493 |
| 1717 | 4 | 0.9998 | Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in gram-negative bacteria by simultaneously genotyping bla(TEM), bla(SHV), and bla(CTX-M). The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of bla(CTX-M) (76%), bla(SHV) (22%), or both (2%), whereas no ESBL variant of bla(TEM) was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%). | 2010 | 20007393 |
| 1437 | 5 | 0.9998 | Novel multiplex PCRs for detection of the most prevalent carbapenemase genes in Gram-negative bacteria within Germany. Introduction. Gram-negative bacteria are a common source of infection both in hospitals and in the community, and antimicrobial resistance is frequent among them, making antibiotic therapy difficult, especially when these isolates carry carbapenem resistance determinants.Hypothesis/Gap Statement. A simple method to detect all the commonly found carbapenemases in Germany was not available.Aim. The aim of this study was to develop a multiplex PCR for the rapid and reliable identification of the most prevalent carbapenemase-encoding genes in Gram-negative bacteria in Germany.Methodology. Data from the German Gram-negative reference laboratory revealed the most prevalent carbapenemase groups in Germany were (in order of prevalence): bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM), bla (OXA-40), bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51), bla (IMI), bla (FIM) and bla (DIM). We developed and tested two multiplex PCRs against 83 carbapenem-resistant Gram-negative clinical isolates. Primers were designed for each carbapenemase group within conserved regions of the encoding genes obtained from publicly available databases. Multiplex-1 included the carbapenemase groups bla (VIM), bla (OXA-48), bla (OXA-23), bla (KPC), bla (NDM) and bla (OXA-40), while multiplex-2 included bla (OXA-58), bla (IMP), bla (GIM), bla (GES), ISAba1-bla (OXA-51) and bla (IMI).Results. In the initial evaluation, all but one of the carbapenemases encoded by 75 carbapenemase-positive isolates were detected using the two multiplex PCRs, while no false-positive results were obtained from the remaining eight isolates. After evaluation, we tested 546 carbapenem-resistant isolates using the multiplex PCRs, and all carbapenemases were detected.Conclusion. A rapid and reliable method was developed for detection and differentiation of 12 of the most prevalent carbapenemase groups found in Germany. This method allows for the rapid testing of clinical isolates prior to species identification and does not require prior phenotypical characterization, constituting a rapid and valuable tool in the management of infections in hospitals. | 2021 | 33448924 |
| 989 | 6 | 0.9998 | Development of a Method for the Fast Detection of Extended-Spectrum β-Lactamase- and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Dogs and Cats in the USA. Antibiotic resistance, such as resistance to beta-lactams and the development of resistance mechanisms, is associated with multifactorial phenomena and not only with the use of third-generation cephalosporins. Many methods have been recommended for the detection of ESBL and pAmpC β-lactamase production but they are very subjective and the appropriate facilities are not available in most laboratories, especially not in clinics. Therefore, for fast clinical antimicrobial selection, we need to rapidly detect ESBL- and pAmpC β-lactamase-producing bacteria using a simple method with samples containing large amounts of bacteria. For the detection of ESBL- and pAmpC phenotypes and genes, the disk diffusion test, DDST and multiplex PCR were conducted. Of the 109 samples, 99 (90.8%) samples were grown in MacConkey broth containing cephalothin, and 71 samples were grown on MacConkey agar containing ceftiofur. Of the 71 samples grown on MacConkey agar containing ceftiofur, 58 Escherichia coli and 19 Klebsiella pneumoniae isolates, in particular, harbored β-lactamase genes. Of the 38 samples that did not grow in MacConkey broth containing cephalothin or on MacConkey agar containing ceftiofur, 32 isolates were identified as E. coli, and 10 isolates were identified as K. pneumoniae; β-lactamase genes were not detected in these E. coli and K. pneumoniae isolates. Of the 78 ESBL- and pAmpC β-lactamase-producing E. coli and K. pneumoniae, 55 (70.5%) isolates carried one or more ESBL genes and 56 (71.8%) isolates carried one or more pAmpC β-lactamase genes. Our method is a fast, and low-cost tool for the screening of frequently encountered ESBL- and pAmpC β-lactamase-producing bacteria and it would assist in diagnosis and improve therapeutic treatment in animal hospitals. | 2023 | 36830436 |
| 2221 | 7 | 0.9998 | Rapid detection of blaKPC carbapenemase genes by real-time PCR. Carbapenem resistance among Enterobacteriaceae is an emerging problem worldwide. Klebsiella pneumoniae carbapenemase (bla(KPC)) enzymes are among the most common beta-lactamases described. In this study, we report the development and validation of a real-time PCR (q-PCR) assay for the detection of bla(KPC) genes using TaqMan chemistry. The q-PCR amplification of bla(KPC) DNA was linear over 7 log dilutions (r(2) = 0.999; slope, 3.54), and the amplification efficiency was 91.6%. The q-PCR detection limit was 1 CFU, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria. Perianal/rectal swabs (n = 187) collected in duplicate from 128 patients admitted to Sheba Medical Center surgical intensive care units were evaluated for the presence of carbapenem-resistant bacteria by culturing on MacConkey agar-plus-carbapenem disks and for bla(KPC) genes by q-PCR. Carbapenem-resistant organisms, all K. pneumoniae, were isolated from 47 (25.1%) of the 187 samples collected, while bla(KPC) genes were detected in 54 (28.9%) of the patient samples extracted by the NucliSENS easyMAG system. Of these, seven samples were positive for bla(KPC) genes by q-PCR but negative for carbapenem resistance by culture, while all samples in which no carbapenem-resistant bacteria were detected by culture also tested negative by q-PCR. Thus, the sensitivity and specificity of the q-PCR assay after extraction by the NucliSENS easyMAG system were 100% and 95%, respectively. Similar values were obtained after DNA extraction by the Roche MagNA Pure LC instrument: 97.9% sensitivity and 96.4% specificity. Overall, the bla(KPC) q-PCR assay appears to be highly sensitive and specific. The utilization of q-PCR will shorten the time to bla(KPC) detection from 24 h to 4 h and will help in rapidly isolating colonized or infected patients and assigning them to cohorts. | 2008 | 18614657 |
| 997 | 8 | 0.9997 | Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted. | 2016 | 27221683 |
| 996 | 9 | 0.9997 | Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. New Delhi metallo-β-lactamase, a metallo-β-lactamase carbapenemase type, mediates resistance to most β-lactam antibiotics including penicillins, cephalosporins, and carbapenems. Therefore, it is important to detect bla (NDM) genes in children's clinical samples as quickly as possible and analyze their characteristics. Here, a recombinase-aided amplification (RAA) assay, which operates in a single one-step reaction tube at 39°C in 5-15 min, was established to target bla (NDM) genes in children's clinical samples. The analytical sensitivity of the RAA assay was 20 copies, and the various bacterial types without bla (NDM) genes did not amplify. This method was used to detect bla (NDM) genes in 112 children's stool samples, 10 of which were tested positive by both RAA and standard PCR. To further investigate the characteristics of carbapenem-resistant bacteria carrying bla (NDM) in children, 15 carbapenem-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Klebsiella oxytoca, Acinetobacter junii, and Proteus mirabilis) were isolated from the 10 samples. Notably, more than one bacterial type was isolated from three samples. Most of these isolates were resistant to cephalosporins, cefoperazone-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, aztreonam, co-trimoxazole, and carbapenems. bla (NDM) (-) (1) and bla (NDM) (-) (5) were the two main types in these samples. These data show that the RAA assay has potential to be a sensitive and rapid bla (NDM) gene screening test for clinical samples. The common existence of bla (NDM) and multi-drug resistance genes presents major challenges for pediatric treatment. | 2021 | 34367092 |
| 2225 | 10 | 0.9997 | Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria. | 2019 | 30857832 |
| 2215 | 11 | 0.9997 | Analytical Performance of Multiplexed Screening Test for 10 Antibiotic Resistance Genes from Perianal Swab Samples. BACKGROUND: Multiantibiotic-resistant bacteria pose a threat to patients and place an economic burden on health care systems. Carbapenem-resistant bacilli and extended-spectrum β-lactamase (ESBL) producers drive the need to screen infected and colonized patients for patient management and infection control. METHODS: We describe a multiplex microfluidic PCR test for perianal swab samples (Acuitas(®) MDRO Gene Test, OpGen) that detects the vancomycin-resistance gene vanA plus hundreds of gene subtypes from the carbapenemase and ESBL families Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-mediated metallo-β-lactamase (VIM), imipenemase metallo-β-lactamase (IMP), OXA-23, OXA-48, OXA-51, CTX-M-1, and CTX-M-2, regardless of the bacterial species harboring the antibiotic resistance. RESULTS: Analytical test sensitivity per perianal swab is 11-250 CFU of bacteria harboring the antibiotic resistance genes. Test throughput is 182 samples per test run (1820 antibiotic resistance gene family results). We demonstrate reproducible test performance and 100% gene specificity for 265 clinical bacterial organisms harboring a variety of antibiotic resistance genes. CONCLUSIONS: The Acuitas MDRO Gene Test is a sensitive, specific, and high-throughput test to screen colonized patients and diagnose infections for several antibiotic resistance genes directly from perianal swab samples, regardless of the bacterial species harboring the resistance genes. | 2016 | 26637481 |
| 1503 | 12 | 0.9997 | OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s). | 2021 | 34571766 |
| 1489 | 13 | 0.9997 | Direct detection of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles by multiplex-touchdown PCR assay. Methicillin-resistant staphylococci (MRS) and ESBL(Extended-Spectrum β-Lactamase)-producing bacteria are the most important resistant pathogens in sepsis. In this study, a new multiplex-touchdown PCR method (MT-PCR) was developed to detect rapidly and simultaneously the presence of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles. The technique showed a sensitivity of 10(3 ) CFU ml(-1) for mecA detection and of 10(2) CFU ml(-1) for other genes, and 100% specificity in the detection of all genes. All genes were detected in the spiked blood culture bottles artificially contaminated with reference strains. Three methicillin-resistant S. aureus (MRSA), two methicillin-resistant S. epidermidis (MRSE) and 32 ESBL-producing bacteria, were isolated from the clinical blood culture specimens in 48 h by standard microbiological procedures. The corresponding genes were detected directly in the three MRSA, two MRSE and 29 ESBL-producing bacteria from the clinical blood culture specimens in 4 h by MT-PCR assay. None of the bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes were detected in three other bottles with ESBL-producing bacteria because of other ESBL genotypes in the pathogens. Likewise, all bottles proven negative by culture remained negative by PCR. The proposed method was rapid, sensitive and specific, and was able to directly detect the genes of MRS and ESBL-producing bacteria from the blood culture bottles. SIGNIFICANCE AND IMPACT OF THE STUDY: Many studies on the development of PCR for the detection of resistance genes have already been published, including multiplex PCR methods. However, cross-amplification reactions can be a major concern in multiplex PCR methods. In this study, we developed a highly sensitive and specific multiplex-touchdown PCR assay for simultaneous detection of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles, cross-amplification was absent and false-positive results were not obtained. | 2017 | 27699804 |
| 2220 | 14 | 0.9997 | Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BACKGROUND: Acinetobacter baumannii is a cosmopolitan bacterium that is frequently reported from hospitalized patients, especially those patients who admitted in the intensive care unit. Recently, multiplex real-time PCR has been introduced for rapid detection of the resistance genes in clinical isolates of bacteria. The current study aimed to develop and evaluate multiplex real-time PCR to detect common resistance genes among clinical isolates of A. baumannii. RESULTS: Multiplex real-time PCR based on melting curve analysis showed different T(m) corresponding to the amplified fragment consisted of 83.5 °C, 93.3 °C and 89.3 °C for blaIMP, blaVIM and blaNDM, respectively. Results of multiplex real-time PCR showed that the prevalence of blaIMP, blaVIM and blaNDM among the clinical isolates of A. baumannii were 5/128(3.9%), 9/128(7.03%) and 0/128(0%), respectively. Multiplex real-time PCR was able to simultaneously identify the resistance genes, while showed 100% concordance with the results of conventional PCR. CONCLUSIONS: The current study showed that blaVIM, was the most prevalent MBL gene among the clinical isolates of A. baumannii while no amplification of blaNDM was seen. Multiplex real-time PCR can be sensitive and reliable technique for rapid detection of resistance genes in clinical isolates. | 2019 | 31182026 |
| 927 | 15 | 0.9997 | Prevalence of carbapenemase-producing organisms at the Kidney Center of Rawalpindi (Pakistan) and evaluation of an advanced molecular microarray-based carbapenemase assay. AIM: A DNA microarray-based assay for the detection of antimicrobial resistance (AMR) genes was used to study carbapenemase-producing organisms at the Kidney Center of Rawalpindi, Pakistan. METHODS: The evaluation of this assay was performed using 97 reference strains with confirmed AMR genes. Testing of 7857 clinical samples identified 425 Gram-negative bacteria out of which 82 appeared carbapenem resistant. These isolates were analyzed using VITEK-2 for phenotyping and the described AMR assay for genotyping. RESULTS: The most prevalent carbapenemase gene was blaNDM and in 12 isolates we detected two carbapenemase genes (e.g., blaNDM/blaOXA-48). CONCLUSION: Our prevalence data from Pakistan show that - as in other parts of the world - carbapenemase-producing organisms with different underlying resistance mechanisms are emerging, and this warrants intensified and constant surveillance. | 2018 | 29938540 |
| 928 | 16 | 0.9997 | Phenotypic and genotypic characterization of carbapenem encoding genes among carbapenem-resistant Gram-negative bacteria isolated from North Casablanca, Morocco. Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics. | 2025 | 40857960 |
| 2126 | 17 | 0.9997 | Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections. | 2014 | 24707481 |
| 991 | 18 | 0.9997 | Characterization of extended-spectrum beta-lactamases in Enterobacteriaceae causing nosocomial infections in a Zagreb University Hospital. The bacteria producing extended-spectrum beta-lactamases (ESBLs) are increasingly reported. production of ESBLs by Gram-negative bacteria is the major mechanism of resistance to oxymino-cephalosporins and aztreonam. the aim of the present study was to characterize ESBLs produced by Enterobacteriaceae, collected during 2003-2005 in a University Hospital in Zagreb, and to determine the risk factors associated with nosocomial infections due to them. 76 isolates of Enterobacteriaceae were included in the study. Antibiotic susceptibility testing was performed by disk-diffusion and broth microdilution method according to CLSI. beta-lactamases were characterized by PCR and sequencing of bla(ESBL )genes. plasmids were extracted by alkaline lysis method and digested with EcoRI enzyme. Most of the strains displayed CAZ phenotype meaning a higher level of resistance to ceftazidime compared to cefotaxime and ceftriaxone. 50 strains produced SHV-ESBL, 28 tem and 8 CTX-M beta-lactamase. Sequencing of bla(SHV )genes from representative strains revealed SHV-5 beta-lactamase in 6 strains whereas sequencing of bla(CTX-M )genes identified CTX-M-3 beta-lactamase in 3 and CTX-M-15 in 5 strains. Strains were assigned to groups from A to f according to plasmid fingerprinting. The spread of SHV-5-producing strains throughout the hospital units could be due to selective pressure of ceftazidime which is widely prescribed in our hospital thus favoring survival of strains possessing a mutation at the Ambler position 240 responsible for ceftazidime and aztreonam resistance. | 2009 | 19567348 |
| 992 | 19 | 0.9997 | Phenotypic and genotypic evaluation of beta-lactamases (ESBL and KPC) among enterobacteria isolated from community-acquired monomicrobial urinary tract infections. Beta-lactamases enzymes such as extended-spectrum beta-lactamases (ESBL) and carbapenemase type beta-lactamases (KPC) confer resistance to beta-lactam drugs among Gram-negative rods, mainly Enterobacteriaceae, as those frequently related to urinary tract infections (UTI). The aim of this study was to evaluate ESBL and KPC among enterobacteria isolated from monomicrobial UTI and to establish correlations between the presence of genetic markers and the phenotypic resistance to beta-lactam antibiotics. Out of 12 304 urine samples collected during 2009, 93 enterobacteria showing an ESBL phenotype were recovered. Imipenem was used for KPC screening and modified disk approximation assay was used for detection of ESBL phenotype. Polymerase chain reaction was used for screening of bla(SHV), bla(TEM), bla(CTX-M), and bla(KPC). Considering the isolated bacteria showing ESBL phenotype 56% of the isolates were positive for two genes. The bla(TEM) was the most frequent (87·1%). Neither KPC phenotype nor bla(KPC)-harboring bacteria were observed. Monitoring the antimicrobial resistance is extremely important to sustain empirical therapy of community-acquired urinary tract infections (Co-UTI). | 2014 | 24621159 |