# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2219 | 0 | 1.0000 | Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria. | 2012 | 22878252 |
| 2218 | 1 | 0.9999 | Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates. BACKGROUND: Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). METHODS: 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. RESULTS: Among the carbapenem-resistant isolates the genes bla (KPC), bla (VIM), bla (NDM) or bla (OXA) were detected. Both RT-PCR assays detected all bla (KPC), bla (VIM) and bla (NDM) in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. CONCLUSION: The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii. | 2017 | 28693493 |
| 924 | 2 | 0.9999 | Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death. | 2021 | 33907430 |
| 2220 | 3 | 0.9999 | Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BACKGROUND: Acinetobacter baumannii is a cosmopolitan bacterium that is frequently reported from hospitalized patients, especially those patients who admitted in the intensive care unit. Recently, multiplex real-time PCR has been introduced for rapid detection of the resistance genes in clinical isolates of bacteria. The current study aimed to develop and evaluate multiplex real-time PCR to detect common resistance genes among clinical isolates of A. baumannii. RESULTS: Multiplex real-time PCR based on melting curve analysis showed different T(m) corresponding to the amplified fragment consisted of 83.5 °C, 93.3 °C and 89.3 °C for blaIMP, blaVIM and blaNDM, respectively. Results of multiplex real-time PCR showed that the prevalence of blaIMP, blaVIM and blaNDM among the clinical isolates of A. baumannii were 5/128(3.9%), 9/128(7.03%) and 0/128(0%), respectively. Multiplex real-time PCR was able to simultaneously identify the resistance genes, while showed 100% concordance with the results of conventional PCR. CONCLUSIONS: The current study showed that blaVIM, was the most prevalent MBL gene among the clinical isolates of A. baumannii while no amplification of blaNDM was seen. Multiplex real-time PCR can be sensitive and reliable technique for rapid detection of resistance genes in clinical isolates. | 2019 | 31182026 |
| 931 | 4 | 0.9999 | Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. INTRODUCTION: Non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii are widespread in the environment and are increasingly associated with nosocomial infections. Extensive and indiscriminate use of antibiotics in hospitals has contributed to an increased number of infections caused by these microorganisms, that are resistant to a wide variety of antimicrobials, including β-lactams. This study aimed to isolate and identify carbapenem-resistant Acinetobacter spp. and P. aeruginosa from hospitalized patients, to determine their antimicrobial susceptibility patterns and to screen for blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143 genes among the isolated bacteria. METHODOLOGY: Antimicrobial resistance patterns were performed using the disk-diffusion method. Genetic markers related to carbapenem resistance were screened by polymerase chain reaction. RESULTS: Carbapenem-resistant Acinetobacter spp. (n = 44) and P. aeruginosa (n = 28) samples were isolated from patients admitted to a tertiary hospital. Polymyxin B was the only effective drug for all isolates. Considering the oxacillinase gene screening, genetic markers were observed only in Acinetobacter isolates. The most frequent genotype observed was blaOXA-23+/blaOXA-51+ (45.5%), followed by blaOXA-51+/blaOXA-143+ (41%). The oxacillinase genes blaOXA-24 and blaOXA-58 were not detected. High mortality rates (> 70%) were observed. CONCLUSIONS: The data suggest the need for rational use of antimicrobials associated with early diagnosis of multidrug-resistant bacteria, especially considering non-fermenting Gram-negative rods, which are widespread in hospitals. The findings of blaoxa-51(-) strains suggest the occurrence and spread of non-A. baumannii species throughout our hospitals. Effective implementation of surveillance programs in hospitals is needed to reduce infectious and resistant intra- and inter-species bacteria. | 2016 | 27367001 |
| 933 | 5 | 0.9999 | Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. INTRODUCTION: Antimicrobial resistance has become a major threat to public health, especially in developing countries, due to the uncontrolled consumption of antibiotics. This study aims to characterize antibiotic resistance genes in different bacteria recovered in different healthcare facilities in Libya. METHODOLOGY: 379 samples were recovered from various sources from different sites. 210 samples were able to grow on culture media. 133 Gram-negative carbapenem-resistant strains were recovered from clinical specimens (n = 64), and hospital environments (n = 69). Antibiotic susceptibility tests were performed to select carbapenem-resistant strains. Colistin resistance was tested by the UMIC method to determine the minimum inhibitory concentration. RT-PCR was conducted to detect the incidence of carbapenemases-encoding genes. RESULTS: Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that NDM-1 was the most prevalent in Enterobacteriaceae isolated from patients and hospital environment (n = 26, n = 41), followed by blaOXA-48 (n = 16, n = 15) and blaVIM (n = 3) from patients and blaKPC (n = 1) from hospital environment. Concerning A. baumannii, blaOXA-23 was detected in strains isolated from patients (n = 8) and hospital environment (n = 6), followed by blaNDM (n = 9) from patients and one from hospital environment. Carbapenem resistance in P. aeruginosa was encoded by modification in OprD encoding gene, such as IS (ISpa26), polymorphism, and a premature stop codon. CONCLUSIONS: Several carbapenem resistant Gram-negative bacteria were identified by the expression of different carbapenemases and the alteration of OprD. | 2025 | 40720466 |
| 923 | 6 | 0.9999 | Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention. | 2025 | 40066541 |
| 936 | 7 | 0.9999 | Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Acinetobacter baumannii and Pseudomonas aeruginosa are the most relevant Gram-negative bacteria associated with hospital and opportunistic infections. This study aimed to evaluate the dynamics of drug-resistant A. baumannii and P. aeruginosa and biofilm formers from two public hospitals in northeastern Brazil. One hundred isolates (35 from A. baumannii and 65 from P. aeruginosa) were identified using the automated Vitek(®)2 Compact method (bioMérieux) and confirmed using the MALDI-TOF (MS) mass spectrometry technique. Molecular experiments were performed by polymerase chain reaction (PCR) to detect the frequency of bla(KPC), bla(IMP), bla(VIM), and bla(SHV) genes. The biofilm formation potential was evaluated using crystal violet in Luria Bertani Miller and trypticase soy broth culture media under the following conditions: at standard concentration, one quarter (25%) of the standard concentration and supplemented with 1% glucose. In addition, the genetic diversity of the isolates was verified by the ERIC-PCR technique. Isolates presented distinct resistance profiles with a high level of beta-lactam resistance. The highest index of genes detected was bla(KPC) (60%), followed by bla(SHV) (39%), bla(VIM) (8%), and bla(IMP) (1%). All the isolates were sensitive to the polymyxins tested and formed biofilms at different intensities. Twelve clones of A. baumannii and eight of P. aeruginosa were identified, of which few were indicative of intra- and interhospital dissemination. This study reveals the dispersion dynamics of these isolates in the hospital environment. The results demonstrate the importance of monitoring programs to combat the spread of these pathogens. | 2020 | 31916896 |
| 865 | 8 | 0.9999 | High Prevalence of bla(NDM-1), bla(VIM), qacE, and qacEΔ1 Genes and Their Association with Decreased Susceptibility to Antibiotics and Common Hospital Biocides in Clinical Isolates of Acinetobacter baumannii. The objective of this study was to evaluate the susceptibility of metallo-β-lactamase (MBL)-producing Acinetobacter baumannii (A. baumannii) clinical isolates to biocides. We also determined the prevalence and correlation of efflux pump genes, class 1 integron and MBL encoding genes. In addition, bla(VIM), bla(NDM-1), qacE and qacEΔ1 nucleotide sequence analysis was performed and compared to sequences retrieved from GenBank at the National Center for Biotechnology Information database. A. baumannii had a resistance rate to carbapenem of 71.4% and 39.3% and was found to be a MBL producer. The minimum inhibitory concentrations (MICs) of chlorhexidine and cetrimide were higher than the recommended concentrations for disinfection in 54.5% and 77.3% of MBL-positive isolates respectively and their MICs were significantly higher among qac gene-positive isolates. Coexistence of qac genes was detected in 68.1% and 50% of the isolates with bla(VIM) and bla(NDM-1) respectively. There was a significant correlation between the presence of qac genes and MBL-encoding bla(VIM) and bla(NDM-1) genes. Each of the bla(NDM-1), bla(VIM), qacE and qacEΔ1 DNA sequences showed homology with each other and with similar sequences reported from other countries. The high incidence of Verona integron-encoded metallo-β-lactamases (VIM) and New-Delhi-metallo-β-lactamase (NDM) and qac genes in A.baumannii highlights emerging therapeutic challenges for being readily transferable between clinically relevant bacteria. In addition reduced susceptibility to chlorhexidine and cetrimide and the potential for cross resistance to some antibiotics necessitates the urgent need for healthcare facilities to periodically evaluate biocides efficacy, to address the issue of antiseptic resistance and to initiate a "biocidal stewardship". | 2017 | 28417918 |
| 2217 | 9 | 0.9999 | MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. BACKGROUND: Antibiotic resistance in bacteria leads to massive health problems. Incidence of carbapenem and multidrug resistance in Gram-negative bacteria are increasing globally and turn out to be a very urgent challenge in health care. Resistant bacteria play an important clinical role during hospital outbreaks as well as in sepsis. Rapid diagnostic tests are necessary to provide immediate information for antimicrobial treatment and infection control measures. METHODS: Our mass spectrometry-based assay was validated with 63 carbapenemase-producing Gram-negative bacterial isolates, and 35 carbapenem-resistant Gram-negative species with no carbapenemase production. These were analyzed from solid culture media and positive blood culture vials. After 4 h of incubation the carbapenemase products were analyzed with the MALDI-TOF MS. All the isolates were genotyped for carbapenemase genes by PCR and sequencing. RESULTS: For culture isolates the concordance of hydrolysis assay to genetic results was 98 % for OXA variants, KPC, VIM, IMP, GIM, and NDM. In contrast, only 14 of 29 Acinetobacter baumannii isolates carrying the OXA and NDM genes could be identified from blood culture. However, from blood culture vials our method allowed the detection of carbapenemases in 98 % of Pseudomonas and Enterobacteriaceae isolates harboring different genes. CONCLUSIONS: This MALDI-TOF MS-based assay permitted the detection of carbapenemases either from solid culture media (98-100 %) or blood culture vials (96 %) for all non-A. baumannii isolates within 4 h. In case of A. baumannii isolates the assay was highly sensitive for the detection of carbapenemases directly from solid culture media. | 2016 | 26839024 |
| 932 | 10 | 0.9999 | Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens. In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-β-lactamases, bla(VIM), bla(IMP), and bla(NDM-1) were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored bla(SIM-1) gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance. | 2018 | 28870092 |
| 909 | 11 | 0.9999 | First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin. | 2018 | 30404152 |
| 996 | 12 | 0.9999 | Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. New Delhi metallo-β-lactamase, a metallo-β-lactamase carbapenemase type, mediates resistance to most β-lactam antibiotics including penicillins, cephalosporins, and carbapenems. Therefore, it is important to detect bla (NDM) genes in children's clinical samples as quickly as possible and analyze their characteristics. Here, a recombinase-aided amplification (RAA) assay, which operates in a single one-step reaction tube at 39°C in 5-15 min, was established to target bla (NDM) genes in children's clinical samples. The analytical sensitivity of the RAA assay was 20 copies, and the various bacterial types without bla (NDM) genes did not amplify. This method was used to detect bla (NDM) genes in 112 children's stool samples, 10 of which were tested positive by both RAA and standard PCR. To further investigate the characteristics of carbapenem-resistant bacteria carrying bla (NDM) in children, 15 carbapenem-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Klebsiella oxytoca, Acinetobacter junii, and Proteus mirabilis) were isolated from the 10 samples. Notably, more than one bacterial type was isolated from three samples. Most of these isolates were resistant to cephalosporins, cefoperazone-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, aztreonam, co-trimoxazole, and carbapenems. bla (NDM) (-) (1) and bla (NDM) (-) (5) were the two main types in these samples. These data show that the RAA assay has potential to be a sensitive and rapid bla (NDM) gene screening test for clinical samples. The common existence of bla (NDM) and multi-drug resistance genes presents major challenges for pediatric treatment. | 2021 | 34367092 |
| 870 | 13 | 0.9999 | Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia. | 2015 | 26191044 |
| 1503 | 14 | 0.9998 | OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s). | 2021 | 34571766 |
| 935 | 15 | 0.9998 | Evaluating the Saliva of Burn ICU Patients for Resistant Infections Harbor Metallo-β-Lactamase Genes. Pseudomonas aeruginosa and Acinetobacter baumannii are the bacteria which increasingly account for nosocomial infections. Due to high virulence, the rate of Multi-Drug Resistance (MDR) and limited availability of new agents, these infections create significant clinical burdens, making it important to identify the possible sources of their occurrence. The aim of this study was to assess non-lactose fermenting bacteria and their metallo-β-lactamase (MBLs) genes expression in the Burn Intensive Care Unit (BICU) patients' saliva samples. This cross-sectional study was conducted from 2017 to 2018 on 124 saliva samples of BICU patients. Identified isolates were evaluated for drug susceptibility by disc diffusion method. MBLs production isolates were detected by Modified Hodge test and Imipenem-EDTA Combined disk. MBLs related genes were evaluated by polymerase chain reaction (PCR). A total of 86 Gram negative non-lactose fermenting bacteria (38; A. baumannii) and (48; P. aeruginosa), were detected. All of the A. baumannii isolates were resistant to Carbapenems, while more than 90% of them were sensitive to Colistin. However, the highest sensitivity in P. aeruginosa isolates was related to Carbapenems and Colistin. More than 95% of A. baumannii and 32% of P. aeruginosa were detected MDR. MBLs production was confirmed in 9 (33.33%) P. aeruginosa and 18 (66.67%) A. baumannii isolates. The blaVIM was the most prevalent gene, while this gene was detected in all of MBLs positive strains. This study confirmed the prevalence of carbapenemase producer Gram-negative bacilli in the saliva of BICU patients. The results of the present study provide a new data set about saliva infection source that could lead to the proper antibiotic regimen and better control of drug resistance. | 2020 | 31930340 |
| 922 | 16 | 0.9998 | Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present. | 2024 | 39458366 |
| 934 | 17 | 0.9998 | High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored bla(OXA-23) gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored bla(NDM-1) gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of bla(OXA-23) and bla(NDM-1) genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance. | 2021 | 34029121 |
| 2221 | 18 | 0.9998 | Rapid detection of blaKPC carbapenemase genes by real-time PCR. Carbapenem resistance among Enterobacteriaceae is an emerging problem worldwide. Klebsiella pneumoniae carbapenemase (bla(KPC)) enzymes are among the most common beta-lactamases described. In this study, we report the development and validation of a real-time PCR (q-PCR) assay for the detection of bla(KPC) genes using TaqMan chemistry. The q-PCR amplification of bla(KPC) DNA was linear over 7 log dilutions (r(2) = 0.999; slope, 3.54), and the amplification efficiency was 91.6%. The q-PCR detection limit was 1 CFU, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria. Perianal/rectal swabs (n = 187) collected in duplicate from 128 patients admitted to Sheba Medical Center surgical intensive care units were evaluated for the presence of carbapenem-resistant bacteria by culturing on MacConkey agar-plus-carbapenem disks and for bla(KPC) genes by q-PCR. Carbapenem-resistant organisms, all K. pneumoniae, were isolated from 47 (25.1%) of the 187 samples collected, while bla(KPC) genes were detected in 54 (28.9%) of the patient samples extracted by the NucliSENS easyMAG system. Of these, seven samples were positive for bla(KPC) genes by q-PCR but negative for carbapenem resistance by culture, while all samples in which no carbapenem-resistant bacteria were detected by culture also tested negative by q-PCR. Thus, the sensitivity and specificity of the q-PCR assay after extraction by the NucliSENS easyMAG system were 100% and 95%, respectively. Similar values were obtained after DNA extraction by the Roche MagNA Pure LC instrument: 97.9% sensitivity and 96.4% specificity. Overall, the bla(KPC) q-PCR assay appears to be highly sensitive and specific. The utilization of q-PCR will shorten the time to bla(KPC) detection from 24 h to 4 h and will help in rapidly isolating colonized or infected patients and assigning them to cohorts. | 2008 | 18614657 |
| 2222 | 19 | 0.9998 | Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis. Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. | 2016 | 27021662 |