Development of multiplex recombinase polymerase amplification for the rapid detection of five carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)) and 10 mcr (mcr-1 to mcr-10) genes in blood cultures. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
221401.0000Development of multiplex recombinase polymerase amplification for the rapid detection of five carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)) and 10 mcr (mcr-1 to mcr-10) genes in blood cultures. The emergence of plasmid-encoded carbapenemase and mobile colistin resistance (mcr) genes poses a significant challenge in controlling the spread of multidrug-resistant Gram-negative bacteria. Addressing this issue requires the development of rapid, accurate, and cost-effective tools for gene detection. For the first time, this study reports three multiplex recombinase polymerase amplification (RPA) assays, each designed to detect five resistance genes: carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)), mcr-1 to mcr-5, and mcr-6 to mcr-10. Using agarose gel electrophoresis, all 15 target genes were successfully amplified by the three assays, demonstrating the potential of these assays for integration with rapid reporting platforms. To increase their applicability, the assays were combined with SYBR(Ⓡ) Green I for visual identification of all 15 target genes and with lateral flow immunoassays (LFIAs) for detection of two carbapenemase (bla(NDM) and bla(OXA-48)-like) and two mcr genes (mcr-1 and mcr-3) genes. Specificity testing showed that RPA-SYBR(Ⓡ) Green I and RPA-LFIAs produced no cross-reactivity among the target genes. The limit of detection for RPA-SYBR(Ⓡ) Green I, for all genes, ranged from 2 × 10(0) to 2 × 10(2) CFU/reaction, and for RPA-LFIAs from 2 × 10(0) to 2 × 10(3) CFU/reaction. The developed RPA-SYBR(Ⓡ) Green I and RPA-LFIAs successfully detected 15 and four target genes, from positive haemoculture bottles. These assays offer a promising approach for point-of-care testing. Providing a valuable tool for antimicrobial resistance surveillance and timely guidance for effective antibiotic intervention.202540618792
504210.9995Multiplex loop-mediated isothermal amplification (multi-LAMP) assay for rapid detection of mcr-1 to mcr-5 in colistin-resistant bacteria. Purpose: The discovery of the plasmid-mediated colistin resistance genes, mcr, revealed a mechanism of transmission of colistin resistance, which is a major, global public health concern especially among individuals infected with carbapenem-resistant Gram-negative bacteria. To monitor the spread and epidemiology of mcr genes, a convenient and reliable method to detect mcr genes in clinical isolates is needed, especially in the primary care institutions. This study aimed to establish a restriction endonuclease-based multiplex loop-mediated isothermal amplification (multi-LAMP) assay to detect mcr genes (mcr-1 to mcr-5) harbored by colistin-resistant bacteria. Methods: A triple-LAMP assay for mcr-1, mcr-3, and mcr-4 and a double-LAMP assay for mcr-2 and mcr-5 were established. The sensitivity and specificity of the LAMP reactions were determined via electrophoresis and visual detection. Results: The sensitivity of the LAMP assay was 10-fold greater than that of PCR, with high specificity among the screened primers. Specific mcr genes were distinguished in accordance with band numbers and the fragment length of the digested LAMP amplification products. Furthermore, the LAMP assay was confirmed as a rapid and reliable diagnostic technique upon application for clinical samples, and the results were consistent with those of conventional PCR assay. Conclusion: The multi-LAMP assay is a potentially promising method to detect mcr genes and will, if implemented, help prevent infections by drug-resistant bacteria in primary-care hospitals due to rapid and reliable surveillance. To our knowledge, this is the first study to report the application of LAMP to detect mcr-2 to mcr-5 genes and the first time that multi-LAMP has been applied to detect mcr genes.201931308708
221820.9995Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates. BACKGROUND: Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). METHODS: 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. RESULTS: Among the carbapenem-resistant isolates the genes bla (KPC), bla (VIM), bla (NDM) or bla (OXA) were detected. Both RT-PCR assays detected all bla (KPC), bla (VIM) and bla (NDM) in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. CONCLUSION: The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.201728693493
504130.9995Development and Validation of a Clinical Laboratory Improvement Amendments-Compliant Multiplex Real-Time PCR Assay for Detection of mcr Genes. Increased use of colistin in both human and veterinary medicine has led to the emergence of plasmid-mediated colistin resistance (mcr genes). In this study, we report the development of a real-time PCR assay using TaqMan probe-based chemistry for detection of mcr genes from bacterial isolates. Positive control isolates harboring mcr-1 and mcr-2 yielded exponential amplification curves with the assay, and the amplification efficiency was 98% and 96% for mcr-1 and mcr-2, respectively. Each target gene could be reproducibly detected from a sample containing 10(3) cfu/mL of mcr-harboring bacteria, and there was no cross-reactivity with DNA extracted from several multidrug-resistant bacteria harboring other resistance genes, but lacking mcr genes. Both sensitivity and specificity of the mcr real-time PCR assay were 100% in a method validation performed with a set of 25 previously well-characterized bacterial isolates containing mcr-positive and -negative bacteria. This newly developed assay is a rapid and sensitive tool for detecting emerging mcr genes in cultured bacterial isolates. The assay was successfully validated according to quality standards of the Clinical Laboratory Improvement Amendments (CLIA).201930942652
222540.9995Evaluation of the DNA microarray "AMR Direct Flow Chip Kit" for detection of antimicrobial resistance genes from Gram-positive and Gram-negative bacterial isolated colonies. INTRODUCTION: The AMR Direct Flow Chip assay allows the simultaneous detection of a large variety of antibiotic resistance genetic markers. To assess this kit's performance, we use isolated colonies as starting material. The assay has been approved by the European Economic Area as a suitable device for in vitro diagnosis (CE IVD) using clinical specimens. METHODS: A total of 210 bacterial isolates harbouring either one or more antimicrobial resistance genes including plasmid-encoded extended-spectrum β-lactamases (SHV, CTX-M) and carbapenemases (GES, SME, KPC, NMC/IMI, SIM, GIM, SPM, NDM, VIM, IMP, and OXA), mecA, vanA and vanB, and 30 controls were included. RESULTS: The assay displayed a sensitivity and specificity of 100% for all target genes included in the array. CONCLUSION: The AMR Direct Flow Chip Kit is an accurate assay for detecting genes which commonly confer resistance to β-lactams and vancomycin from isolated colonies in culture of Gram-positive and Gram-negative bacteria.201930857832
222650.9995Evaluation of the Microbiological Performance and Potential Clinical Impact of New Rapid Molecular Assays for the Diagnosis of Bloodstream Infections. Bloodstream infection (BSI) is a critical medical emergency associated with a high mortality rate. Rapid and accurate identification of the causative pathogen and the results of antimicrobial susceptibility testing are crucial for initiating appropriate antimicrobial therapy. The aim of this study was to evaluate the performance of a new rapid PCR Molecular Mouse System (MMS) for the identification of Gram-negative bacteria (GNB) and GNB resistance genes directly from a positive blood culture (BC). The validation of these rapid multiplex assays was carried out in a real hospital setting. A total of 80 BSI episodes were included in our study and the results were compared with culture-based methods. BC samples in which GNB had previously been detected microscopically and which originated from different hospital wards were analysed. The MMS GNB identification assay achieved a sensitivity of 98.7% and a specificity of 100% for the covered pathogens. In one BC sample, Klebsiella aerogenes was identified at the family level (Enterobacteriaceae) with MMS. However, in three polymicrobial samples, MMS identified bacteria that were not detected by culture-based methods (Klebsiella pneumoniae, K. aerogenes and Stenotrophomonas maltophilia). MMS also showed excellent overall performance in the detection of GNB resistance markers (100% sensitivity and 100% specificity). The type of extended-spectrum beta-lactamase (ESBL) resistance gene identified correctly with MMS was CTX-M-1/9 (n = 17/20), alone or in combination with SHV-type β-lactamase or with the different types of carbapenemase genes. MMS detected one carbapenemase gene of each type (KPC, NDM and OXA-23) and six OXA-48 genes. In addition, the colistin resistance gene mcr-1 was detected in one positive BC with Escherichia coli (E. coli). The time to result was significantly shorter for MMS than for routine culture methods. A retrospective analysis of the patients' medical records revealed that a change in empirical antimicrobial therapy would have been made in around half of the patients following the MMS results. These results support the use of MMS as a valuable complement to conventional culture methods for more rapid BSI diagnosis and adjustment of empirical therapy.202540142509
221960.9995Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria.201222878252
222970.9995A pentaplex real-time PCR assay for rapid identification of major beta-lactamase genes KPC, NDM, CTX, CMY, and OXA-48 directly from bacteria in blood. Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3-5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes (Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia.Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States.Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40-60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes.Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay.Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4-8 c.f.u. ml(-1).Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.202134878374
221780.9994MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. BACKGROUND: Antibiotic resistance in bacteria leads to massive health problems. Incidence of carbapenem and multidrug resistance in Gram-negative bacteria are increasing globally and turn out to be a very urgent challenge in health care. Resistant bacteria play an important clinical role during hospital outbreaks as well as in sepsis. Rapid diagnostic tests are necessary to provide immediate information for antimicrobial treatment and infection control measures. METHODS: Our mass spectrometry-based assay was validated with 63 carbapenemase-producing Gram-negative bacterial isolates, and 35 carbapenem-resistant Gram-negative species with no carbapenemase production. These were analyzed from solid culture media and positive blood culture vials. After 4 h of incubation the carbapenemase products were analyzed with the MALDI-TOF MS. All the isolates were genotyped for carbapenemase genes by PCR and sequencing. RESULTS: For culture isolates the concordance of hydrolysis assay to genetic results was 98 % for OXA variants, KPC, VIM, IMP, GIM, and NDM. In contrast, only 14 of 29 Acinetobacter baumannii isolates carrying the OXA and NDM genes could be identified from blood culture. However, from blood culture vials our method allowed the detection of carbapenemases in 98 % of Pseudomonas and Enterobacteriaceae isolates harboring different genes. CONCLUSIONS: This MALDI-TOF MS-based assay permitted the detection of carbapenemases either from solid culture media (98-100 %) or blood culture vials (96 %) for all non-A. baumannii isolates within 4 h. In case of A. baumannii isolates the assay was highly sensitive for the detection of carbapenemases directly from solid culture media.201626839024
504090.9994Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis. BACKGROUND: The emergence of multi-drug-resistant (MDR) micro-organisms prompted new interest in older antibiotics, such as colistin, that had been abandoned previously due to limited efficacy or high toxicity. Over the years, several chromosomal-encoded colistin resistance mechanisms have been described; more recently, 10 plasmid-mediated mobile colistin resistance (mcr) genes have been identified. Spread of these genes among MDR Gram-negative bacteria is a matter of serious concern; therefore, reliable and timely mcr detection is paramount. AIM: To design and validate a multiplex real-time polymerase chain reaction (PCR) assay for detection and differentiation of mcr genes. METHODS: All available mcr alleles were downloaded from the National Center for Biotechnology Information Reference Gene Catalogue, aligned with Clustal Omega and primers designed using Primer-BLAST. Real-time PCR monoplexes were optimized and validated using a panel of 120 characterized Gram-negative strains carrying a wide range of resistance genes, often in combination. Melt-curve analysis was used to confirm positive results. FINDINGS: In-silico analysis enabled the design of a 'screening' assay for detection of mcr-1/2/6, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8 and mcr-9/10, paired with an internal control assay to discount inhibition. A 'supplementary' assay was subsequently designed to differentiate mcr-1, mcr-2, mcr-6, mcr-9 and mcr-10. Expected results were obtained for all strains (100% sensitivity and specificity). Melt-curve analysis showed consistent melting temperature results. Inhibition was not observed. CONCLUSIONS: The assay is rapid and easy to perform, enabling unequivocal mcr detection and differentiation even when more than one variant is present. Adoption by clinical and veterinary microbiology laboratories would aid the surveillance of mcr genes amongst Gram-negative bacteria.202133485969
2222100.9994Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis. Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens.201627021662
2223110.9994Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. To prevent the spread of carbapenemase-producing bacteria, a fast and accurate detection of patients carrying these bacteria is extremely important. The Check-Direct CPE assay (Check-Points, Wageningen, The Netherlands) is a new multiplex real-time PCR assay, which has been developed to detect and differentiate between the most prevalent carbapenemase genes encountered in Enterobacteriaceae (blaKPC, blaOXA-48, blaVIM, and blaNDM) directly from rectal swabs. Evaluation of this assay using 83 non-duplicate isolates demonstrated 100% sensitivity and specificity and the correct identification of the carbapenemase gene(s) present in all carbapenemase-producing isolates. Moreover, the limit of detection (LoD) of the real-time PCR assay in spiked rectal swabs was determined and showed comparable LoDs with the ChromID CARBA agar. With an excellent performance on clinical isolates and spiked rectal swabs, this assay appeared to be an accurate and rapid method to detect blaKPC, blaOXA-48, blaVIM, and blaNDM genes directly from a rectal screening swab.201324135412
2228120.9994Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. BACKGROUND: At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. METHODS: Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. RESULTS: For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. CONCLUSION: The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.201931849899
2251130.9994Direct-PCR from rectal swabs and environmental reservoirs: A fast and efficient alternative to detect bla(OXA-48) carbapenemase genes in an Enterobacter cloacae outbreak setting. Carbapenemase-producing bacteria are a risk factor in clinical settings worldwide. The aim of the study was to accelerate the time to results during an outbreak situation with bla(OXA-48)-positive Enterobacter cloacae by using a real-time multiplex quantitative PCR (qPCR) directly on rectal swab specimens and on wastewater samples to detect carbapenemase-producing bacteria. Thus, we analyzed 681 rectal swabs and 947 environmental samples during a five-month period by qPCR and compared the results to culture screening. The qPCR showed a sensitivity of 100% by testing directly from rectal swabs and was in ten cases more sensitive than the culture-based methods. Environmental screening for bla(OXA-48)-carbapenemase genes by qPCR revealed reservoirs of different carbapenemase genes that are potential sources of transmission and might lead to new outbreaks. The rapid identification of patients colonized with those isolates and screening of the hospital environment is essential for earlier patient treatment and eliminating potential sources of nosocomial infections.202234343553
1824140.9994Subtype Screening of bla(IMP) Genes Using Bipartite Primers for DNA Sequencing. Genes conferring carbapenem resistance have spread worldwide among gram-negative bacteria. Subtyping of these genes has epidemiological value due to the global cross-border movement of people. Subtyping of bla(IMP) genes that frequently detected in Japan appears to be important in public health settings; however, there are few useful tools for this purpose. We developed a subtyping screening tool based on PCR direct sequencing, which targets the internal sequences of almost all bla(IMP) genes. The tool used bipartite multiplex primers with M13 universal sequences at the 5'-end. According to in silico analysis, among the 78 known IMP-type genes, except for bla(IMP-81), 77 detected genes were estimated to be differentiated. In vitro evaluation indicated that sequences of amplicons of IMP-1, IMP-6, IMP-7, and IMP-20 templates were identical to their respective subtypes. Even if the amplicons were small or undetectable through the first PCR, sufficient amplicons for DNA sequencing were obtained through a second PCR using the M13 universal primers. In conclusion, our tool can be possibly used for subtype screening of bla(IMP), which is useful for the surveillance of bacteria with bla(IMP) in clinical and public health settings or environmental fields.202133790070
1717150.9994Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in gram-negative bacteria by simultaneously genotyping bla(TEM), bla(SHV), and bla(CTX-M). The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of bla(CTX-M) (76%), bla(SHV) (22%), or both (2%), whereas no ESBL variant of bla(TEM) was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%).201020007393
1676160.9994Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. BACKGROUND: Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. METHODS: In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK(®)2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. RESULTS: The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). CONCLUSION: The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.201526444537
2988170.9994Establishment of a Multiplex Loop-Mediated Isothermal Amplification Method for Rapid Detection of Sulfonamide Resistance Genes (sul1, sul2, sul3) in Clinical Enterobacteriaceae Isolates from Poultry. Antimicrobial resistance genes play an important role in mediating resistance to sulfonamide in Gram-negative bacteria. While PCR is the current method to detect sulfonamide resistance genes (sul1, sul2, sul3), it is time-consuming and costly and there is an urgent need to develop a more convenient, simpler and rapid test for the sul. In this study, we describe a multiplex loop-mediated isothermal amplification (m-LAMP) assay we developed for the rapid and simultaneous detection of three sul. This m-LAMP assay successfully detected seven reference strains with different sul genotypes, but was negative for nine sul-negative reference strains. The m-LAMP products were verified by HinfI restriction enzyme digestion and the detection limit of the test was 0.5 pg genomic DNA per reaction. Testing 307 sulfonamide-resistant Enterobacteriaceae clinical isolates with the m-LAMP revealed all were positive for the sul with sul2 (79.5%) and sul1 (64.5%) being most prevalent, and sul3 the least (12.1%). Of the Enterobacteriaceae isolates tested, the Salmonella Indiana, a newly emerging serovar resistant to numerous antimicrobials, were most commonly positive with 33% having sul3.201829708802
918180.9993Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.202336837486
1664190.9993Emergence of colistin resistance in Enterobacter aerogenes from Croatia. A colistin-resistant Enterobacter aerogenes [study code 12264] was isolated from the tracheal aspirate of a 71-year-old male patient in the General Hospital [GH] in Pula, Croatia. The patient was previously treated in University Hospital Centre in Rijeka with colistin in order to eradicate Acinetobacter baumannii isolate, susceptible only to colistin and tigecycline. Genes encoding ESBLs [bla(TEM), bla(SHV), bla(CTX-M), bla(PER-1)] were screened by PCR. The strain was shown to possess bla(CTX-M-15) and bla(TEM-1) genes. To asses genes possibly involved in resistance to colistin the chromosomal enconding mgrB gene and the plasmid-mediated mcr-1 and mcr-2 genes were screened as described previously. Mcr-1 and mcr-2 genes were not detected and mgrB gene presented a wild-type sequence. PCR-based Replicon typing method [PBRT] conducted on an E. aerogenes isolate, showed that the strain carried an IncN plasmid. Adaptive mechanisms such as changes of the bacterial cell outer membrane that cause porin decrease or presence of an efflux pump, due to selection pressure exerted by the therapeutic administration of colistin, could be responsible for the development of colistin resistance in our strain, as recently reported in E. aerogenes from France. Due to effective infection control measures, the colistin-resistant strain did not spread to other patients or hospital wards. This is the first report of an ESBL-producing, colistin-resistant E. aerogenes in clinically relevant samples such as endotracheal aspirate and blood culture, showing the presence of this rare resistance profile among Gram-negative bacteria.201829063811