Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
220401.0000Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. BACKGROUND: Treatment of chronic sinusitis is complicated due to increase of antibiotic-resistant bacteria. The aim of this study was to determine the multidrug resistance (MDR) pattern of the bacteria causing chronic sinusitis in north of Iran. METHODS: This cross-sectional study was carried out on patients with chronic sinusitis. Bacterial susceptibility to antimicrobial agents was determined according to the CLSI 2013 standards. Double-disk synergy (DDS) test was performed for the detection of extended-spectrum beta-lactamase (ESBL) producing bacteria; also methicillin-resistant Staphylococcus (MRSA) strains were identified by MRSA screen agar. The MDR isolates were defined as resistant to 3 or more antibiotics. Data were analyzed using SPSS 17 software. Descriptive statistics was used to describe the features of the data in this study. RESULTS: The rate of ESBL-producing bacteria was 28.75-37.03% among enterobacteriaceae and the rate of MRSA was 42.75%-60% among Staphylococcus strains. The most detectable rate of the MDR bacterial isolates was Gram-negative bacteria 39 (76.47%) and Enterobacter spp. 19(70.37%) was the most multidrug resistant isolate among Gram negative bacteria. Also 36 (73.46%) of the gram positive bacterial isolated were multidrug resistance and Staphylococcus aureus 9(90%) was the most MDR among Gram positive bacteria. CONCLUSION: Antimicrobial resistance is increasing in chronic bacterial sinusitis. The emergence of MRSA and ESBL bacteria causing chronic sinusitis is increasing.201627386063
214910.9998Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Urinary tract infection (UTI) by antibiotic-resistant strains has become increasingly problematic, with trends that differ from country to country. This study examined cross-resistance and the mechanisms of cephalosporin resistance in UTI-causative bacteria isolated in Indonesia. Antibiotic susceptibility tests based on Clinical Laboratory Standards Institute (CLSI) standards were done for UTI-causative strains (n = 50) isolated from patients in Indonesia in 2015-2016 and showed resistance against the third-generation cephalosporin. Mechanistic studies were carried out to confirm the presence of extended-spectrum β-lactamase (ESBL) genes, carbapenemase-related genes, the fosA3 gene related to fosfomycin resistance, and mutations of quinolone-resistance-related genes. Isolated UTI-causative bacteria included Escherichia coli (64.0%), Pseudomonas aeruginosa (16.0%), Klebsiella pneumoniae (10.0%), and others (10.0%). These strains showed 96.0% susceptibility to amikacin, 76.0% to fosfomycin, 90.0% to imipenem, 28.0% to levofloxacin, 92.0% to meropenem, and 74.0% to tazobactam/piperacillin. ESBL was produced by 68.0% of these strains. Mechanistic studies found no strains with carbapenemase genes but 6.0% of strains had the fosA3 gene. Seventy-two % of the strains had mutations in the gyrA gene and 74.0% in the parC gene. Most E. coli strains (87.5%) had Ser-83 → Leu and Asp-87 → Asn in gyrA and 93.8% of E. coli had Ser-80 → Ile in parC. There were significant correlations among mutations in gyrA and parC, and fosA3 gene detection (P < 0.05), respectively. To our knowledge, this is the first mechanistic study of antibiotic-cross-resistant UTI-causative bacteria in Indonesia. Further studies with a longer period of observation are necessary, especially for changes in carbapenem resistance without carbapenemase-related genes.202133713209
215320.9998Molecular Characterization and Epidemiology of Antibiotic Resistance Genes of β-Lactamase Producing Bacterial Pathogens Causing Septicemia from Tertiary Care Hospitals. Septicemia is a systematic inflammatory response and can be a consequence of abdominal, urinary tract and lung infections. Keeping in view the importance of Gram-negative bacteria as one of the leading causes of septicemia, the current study was designed with the aim to determine the antibiotic susceptibility pattern, the molecular basis for antibiotic resistance and the mutations in selected genes of bacterial isolates. In this study, clinical samples (n = 3389) were collected from potentially infected male (n = 1898) and female (n = 1491) patients. A total of 443 (13.07%) patients were found to be positive for bacterial growth, of whom 181 (40.8%) were Gram-positive and 262 (59.1%) were Gram-negative. The infected patients included 238 males, who made up 12.5% of the total number tested, and 205 females, who made up 13.7%. The identification of bacterial isolates revealed that 184 patients (41.5%) were infected with Escherichia coli and 78 (17.6%) with Pseudomonas aeruginosa. The clinical isolates were identified using Gram staining biochemical tests and were confirmed using polymerase chain reaction (PCR), with specific primers for E. coli (USP) and P. aeruginosa (oprL). Most of the isolates were resistant to aztreonam (ATM), cefotaxime (CTX), ampicillin (AMP) and trimethoprim/sulfamethoxazole (SXT), and were sensitive to tigecycline (TGC), meropenem (MEM) and imipenem (IPM), as revealed by high minimum inhibitory concentration (MIC) values. Among the antibiotic-resistant bacteria, 126 (28.4%) samples were positive for ESBL, 105 (23.7%) for AmpC β-lactamases and 45 (10.1%) for MBL. The sequencing and mutational analysis of antibiotic resistance genes revealed mutations in TEM, SHV and AAC genes. We conclude that antibiotic resistance is increasing; this requires the attention of health authorities and clinicians for proper management of the disease burden.202336978484
235530.9998Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level.201224669633
220340.9998What about Urinary Tract Infections and its Antibiotic Resistance Bacteria in Ilam, Iran? BACKGROUND: Because of the unknown situation of antibiotic resistance pattern in the main hospital in Ilam, Iran, we aimed to evaluate the antibiotic resistance pattern of uropathogenic bacteria obtained from referred patients to Imam Khomaini Hospital, Ilam, Iran. So, 114 bacteria were collected during 9-month period and evaluated for their antibiotic resistance patterns. RESULTS: Our results demonstrated that Escherichia coli as the dominant responsible for urinary tract infection. Our results demonstrated that 61.4 % (n = 70) of isolates were positive for E.coli, while lowest prevalence was observed for Staphylococcus aureus and Acinetobacter baumannii. The results also showed that 6.4% (n = 7) were metallo beta lactamase (MBL) producers. Our findings showed only 4 gram positive bacteria were obtained from patients with urinary tract infections including one methicillin resistant S. aureus (MRSA) and 2 vancomycin resistant Enterococcus faecalis (VRE). CONCLUSION: In conclusion, we strongly recommended to perform a perfect study among all hospitals in Iran to evaluate the situation of antibiotic resistance and make a real panel to control this issue.201829932037
217450.9998Frequency of Beta-Lactamase Antibiotic Resistance Genes in Escherichia Coli and Klebsiella pneumoniae. BACKGROUND: This cross-sectional study was performed on isolates of Klebsiella pneumoniae, and E.coli from clinical specimens of patients admitted to Sayyad Shirazi Hospital by census sampling method in 2019. Antibiogram testing was performed using the disk diffusion method as defined by the Clinical and Laboratory Standards Organization for performing this test. Finally, the abundance of genes was evaluated by PCR using specific primers. Frequency, percentage, mean±SD were used to describe the data. Chi-square and Fisher's exact tests were used to compare the presence and absence of the studied genes alone and in the presence of each other. RESULT: This study was performed on 130 positive samples, isolated from 32 (24.6%) males and 98 (65.4%) females with a mean age of 43.78 ± 21.72. From the total number of 130 isolates, 84 (64.6%) consisted of E.coli, and 46 (35.4%) were Klebsiella. Most of the cultures were urine and vaginal (61.5%). The highest antibiotic resistance in isolates was cephalexin and cefazolin (67.9% in E.coli & 63% in Klebsiella). Colistin was identified as the most effective antibiotic (100%) in both. AMPC extendedspectrum β-lactamase genes were present in 40 (30.8%) isolates. The highest frequency about the gene pattern of AMPC positive β-lactamase bacteria was correlated to DHA, FOX, and CIT genes, while none of the samples contained the MOX β-lactamase gene. E.coli and Klebsiella beta-lactamase-producing AMPC isolates were also significantly correlated with antibiotic resistance to the cephalosporin class (P <0.05). CONCLUSION: This study indicated a high percentage of resistance to third and fourth generation cephalosporins. Hence, careful antibiogram tests and prevention of antibiotic overuse in infections caused by AMPC-producing organisms and screening of clinical samples for the resistance mentioned above genes and providing effective strategies to help diagnose and apply appropriate treatments and change antibiotic usage strategies can partially prevent the transmission of this resistance.202134483624
92360.9998Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
231070.9998Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Patients with cancer have a higher risk of severe bacterial infections. This study aims to determine the frequency, susceptibility profiles, and resistance genes of bacterial species involved in bacteremia, as well as risk factors associated with mortality in cancer patients in Colombia. In this prospective multicenter cohort study of adult patients with cancer and bacteremia, susceptibility testing was performed and selected resistance genes were identified. A multivariate regression analysis was carried out for the identification of risk factors for mortality. In 195 patients, 206 microorganisms were isolated. Gram-negative bacteria were more frequently found, in 142 cases (68.9%): 67 Escherichia coli (32.5%), 36 Klebsiella pneumoniae (17.4%), and 21 Pseudomonas aeruginosa (10.1%), and 18 other Gram-negative isolates (8.7%). Staphylococcus aureus represented 12.4% (n = 25). Among the isolates, resistance to at least one antibiotic was identified in 63% of them. Genes coding for extended-spectrum beta-lactamases and carbapenemases, blaCTX-M and blaKPC, respectively, were commonly found. Mortality rate was 25.6% and it was lower in those with adequate empirical antibiotic treatment (22.0% vs. 45.2%, OR: 0.26, 95% CI: 0.1-0.63, in the multivariate model). In Colombia, in patients with cancer and bacteremia, bacteria have a high resistance profile to beta-lactams, with a high incidence of extended-spectrum beta-lactamases and carbapenemases. Adequate empirical treatment diminishes mortality, and empirical selection of treatment in this environment of high resistance is of key importance.202336838324
215180.9998Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence.202439011020
234990.9998DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene.202439724880
2311100.9998Serious antimicrobial resistance status of pathogens causing hospital-acquired lower respiratory tract infections in North China. Antimicrobial resistance patterns of pathogens causing hospital-acquired lower respiratory tract infections (LRTIs) in Shandong Province, China were investigated using data collected from January 2002 to December 2006. A total of 10 337 isolates were characterized in sputum samples from 39 920 LRTI patients: 68.72% were Gram-negative bacteria, 20.65% were Gram-positive bacteria, and 10.62% were fungi. Organisms most frequently isolated were: Pseudomonas aeruginosa (16.88%), Klebsiella pneumoniae (10.80%), Escherichia coli (10.71%), fungi (10.62%), Staphylococcus aureus (9.68%) and Acinetobacter baumannii (9.03%). Imipenem was the most effective antibiotic against Gram-negative bacteria. Most Gram-positive bacteria were susceptible to vancomycin. Susceptibility to cephalosporins was not optimal and resistance to fluoroquinolones was high. Resistance of Gram-negative bacteria showed a rapid increase over the study period, while resistance of Gram-positive bacteria remained relatively stable. The emergence of resistance to commonly prescribed antimicrobial agents used against LRTI pathogens has compounded the problem of using empirical therapy and created selective pressure on physicians to use certain antibiotics.200919589276
1128110.9998Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy.201424943757
2356120.9998Occurrence of Multiple-Drug Resistance Bacteria and Their Antimicrobial Resistance Patterns in Burn Infections from Southwest of Iran. Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.202234236077
997130.9998Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
924140.9998Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death.202133907430
2165150.9998Distribution and analysis of the resistance profiles of bacteria isolated from blood cultures in the intensive care unit. PURPOSE: To investigate the distribution characteristics and drug resistance of pathogenic bacteria in bloodstream infections, providing a basis for rational clinical treatment. PATIENTS AND METHODS: Retrospective analysis of 1,282 pathogenic strains isolated from blood cultures in the intensive care unit (ICU) of the Second Affiliated Hospital of Xi'an Jiaotong University from January 1, 2019, to December 31, 2022. RESULTS: Gram-positive bacteria (52.0%) slightly predominated over gram-negative bacteria (48.0%). The top three gram-positive bacteria were Coagulase-negative Staphylococcus (28.0%), Enterococcus faecium (7.4%), and Staphylococcus aureus (6.6%). Staphylococci exhibited a high resistance rate to penicillin, oxacillin, and erythromycin; no strains resistant to vancomycin or linezolid were found. Among the Enterococci, Enterococcus faecium had a high resistance rate to penicillin, ampicillin, and erythromycin. Two strains of Enterococcus faecalis were resistant to linezolid, but none to vancomycin. The top three gram-negative bacteria were Escherichia coli (14.7%), Klebsiella pneumoniae (14.0%), and Acinetobacter baumannii (4.8%). The resistance rate of Escherichia coli to carbapenems increased from 0.0 to 2.3%. Acinetobacter baumannii reached 100% carbapenem resistance (up from 75.0%), while Klebsiella pneumoniae demonstrated 21.1-80.4% resistance to various carbapenems. CONCLUSION: The isolation rate of gram-positive bacteria in patients with bloodstream infection in the ICU of the Second Affiliated Hospital of Xi'an Jiaotong University was slightly higher than that of gram-negative bacteria. The alarming carbapenem resistance among gram-negative pathogens and emerging linezolid resistance in Enterococci demand urgent clinical interventions, including enhanced surveillance, antimicrobial stewardship, and novel therapeutic strategies.202540727562
2124160.9998Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.202032215024
935170.9998Evaluating the Saliva of Burn ICU Patients for Resistant Infections Harbor Metallo-β-Lactamase Genes. Pseudomonas aeruginosa and Acinetobacter baumannii are the bacteria which increasingly account for nosocomial infections. Due to high virulence, the rate of Multi-Drug Resistance (MDR) and limited availability of new agents, these infections create significant clinical burdens, making it important to identify the possible sources of their occurrence. The aim of this study was to assess non-lactose fermenting bacteria and their metallo-β-lactamase (MBLs) genes expression in the Burn Intensive Care Unit (BICU) patients' saliva samples. This cross-sectional study was conducted from 2017 to 2018 on 124 saliva samples of BICU patients. Identified isolates were evaluated for drug susceptibility by disc diffusion method. MBLs production isolates were detected by Modified Hodge test and Imipenem-EDTA Combined disk. MBLs related genes were evaluated by polymerase chain reaction (PCR). A total of 86 Gram negative non-lactose fermenting bacteria (38; A. baumannii) and (48; P. aeruginosa), were detected. All of the A. baumannii isolates were resistant to Carbapenems, while more than 90% of them were sensitive to Colistin. However, the highest sensitivity in P. aeruginosa isolates was related to Carbapenems and Colistin. More than 95% of A. baumannii and 32% of P. aeruginosa were detected MDR. MBLs production was confirmed in 9 (33.33%) P. aeruginosa and 18 (66.67%) A. baumannii isolates. The blaVIM was the most prevalent gene, while this gene was detected in all of MBLs positive strains. This study confirmed the prevalence of carbapenemase producer Gram-negative bacilli in the saliva of BICU patients. The results of the present study provide a new data set about saliva infection source that could lead to the proper antibiotic regimen and better control of drug resistance.202031930340
2150180.9998Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria.202236227675
2200190.9998Bloodstream infections and antibiotic resistance at a regional hospital, Colombia, 2019-2021. OBJECTIVES: To assess antibiotic susceptibility of World Health Organization (WHO) priority bacteria (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Salmonella spp., Staphylococcus aureus, and Streptococcus pneumoniae) in blood cultures at the Orinoquía regional hospital in Colombia. METHODS: This was cross-sectional study using routine laboratory data for the period 2019-2021. Data on blood samples from patients suspected of a bloodstream infection were examined. We determined: the total number of blood cultures done and the proportion with culture yield; the characteristics of patients with priority bacteria; and the type of bacteria isolated and antibiotic resistance patterns. RESULTS: Of 25 469 blood cultures done, 1628 (6%) yielded bacteria; 774 (48%) of these bacteria were WHO priority pathogens. Most of the priority bacteria isolated (558; 72%) were gram-negative and 216 (28%) were gram-positive organisms. Most patients with priority bacteria (666; 86%) were hospitalized in wards other than the intensive care unit, 427 (55%) were male, and 321 (42%) were ≥ 60 years of age. Of the 216 gram-positive bacteria isolated, 205 (95%) were Staphylococcus aureus. Of the 558 gram-negative priority bacteria isolated, the three most common were Escherichia coli (34%), Klebsiella pneumoniae (28%), and Acinetobacter baumannii (20%). The highest resistance of Staphylococcus aureus was to oxacillin (41%). For gram-negative bacteria, resistance to antibiotics ranged from 4% (amikacin) to 72% (ampicillin). CONCLUSIONS: Bacterial yield from blood cultures was low and could be improved. WHO priority bacteria were found in all hospital wards. This calls for rigorous infection prevention and control standards and continued surveillance of antibiotic resistance.202337082533