Antimicrobial resistance in urinary pathogens and culture-independent detection of trimethoprim resistance in urine from patients with urinary tract infection. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
215601.0000Antimicrobial resistance in urinary pathogens and culture-independent detection of trimethoprim resistance in urine from patients with urinary tract infection. BACKGROUND: Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the susceptibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes (dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary pathogens and from urine without culture. METHODS: Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, ciprofloxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94). RESULTS: Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an MIC(90) > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Klebsiella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; NPV = 86.1%). CONCLUSIONS: This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim resistance without the need for culture and susceptibility testing.202235610571
113010.9999The characteristic of antibiotic drug resistance of Salmonella Typhi isolated from tertiary care hospital in Faisalabad. Salmonella Typhi, a human-restricted pathogen, is demonstrating multi-drug resistance (MDR) due to widespread and inappropriate antibiotic use. This study aims to molecular identify the pattern of antibiotic resistance. Blood samples from 2456 suspected patients were assessed. Molecular identification of Salmonella Typhi was performed by amplifying the fliC gene. The Disc diffusion method was used to measure the susceptibility of antibiotics. 2456 patient samples, bacterial growth and Salmonella Typhi were 152 (6.2 %) positive. PCR analysis confirmed that all 152 isolated strains were Salmonella Typhi (100%) through the amplification of the fliC gene. Salmonella Typhi isolates showed resistance to trimethoprim (58%), ampicillin (63%), ciprofloxacin (79%) and chloramphenicol (58%). Fifty-eight percent of the isolates showed multi-drug resistance, whereas 26 percent had extensive drug resistance. Antibiotic resistance gene of quinolones was isolated as 44 (36.4%), whereas 88 (57.9 %) were positive for bla(CTX-M) gene were detected among cephalosporin-resistance bacteria 56 (36.8 %) resistance bla(IMP) and bla(OXA-48) were detected among carbapenem-resistance bacteria. For the azithromycin resistance, more genes were detected as a percentage 03 (50 %) from isolates. It concludes that several multidrug resistance and extensive drug-resistance Salmonella Typhi were found. The majority of isolates were sensitive to meropenem, Imipenem and Azithromycin.202540996203
217620.9998Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.202235119565
215430.9998Molecular analysis of multidrug-resistant E. coli in pediatric UTIs: findings from a Nigerian Hospital. INTRODUCTION: This study aimed to isolate and characterize antibiotic-resistant Escherichia coli from urine samples of children at the Mother and Child Hospital in Ondo State, Nigeria, assessing antibiogram profiling and resistance genes. METHODOLOGY: Three hundred urine samples (158 females, 142 males), aged 3-5 years, were collected, transported on ice, and analyzed bacteriologically. E. coli and Gram-negative bacteria were isolated using Eosin Methylene Blue agar and identified through colony morphology and biochemical tests. Antibiotic susceptibility was determined via Kirby Bauer's disc diffusion, and resistance genes were detected using Polymerase Chain Reaction (PCR). RESULTS: Of the 300 samples, 40 (13.3%) yielded E. coli with varying antibiotic resistance profiles. The highest resistance was against Amoxicillin-clavulanate (87.5%) followed by Ceftriaxone (80%). Susceptibility was observed to Nitrofurantoin, Erythromycin, and Chloramphenicol. Multiple resistance patterns against 3-4 antibiotic classes were recorded, with 12 distinct patterns observed. Eight isolates harbored blaCTX-M gene, while five carried the aac3-IV gene. CONCLUSIONS: The study concluded a high occurrence of E. coli infection and multiple antibiotic resistance in the region. The presence of resistance genes suggests significant economic and health implications, emphasizing prudent antibiotic use under physician guidance to mitigate multiple antibiotic resistance.202438484349
266740.9998Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid.201627622161
112850.9998Molecular detection of ESBLs production and antibiotic resistance patterns in Gram negative bacilli isolated from urinary tract infections. BACKGROUND: β-lactam resistance is more prevalent in Gram negative bacterial isolates worldwide, particularly in developing countries. In order to provide data relating to antibiotic therapy and resistance control, routine monitoring of corresponding antibiotic resistance genes is necessary. AIMS: The aim of this study was the characterization of β-lactam resistance genes and its plasmid profile in bacteria isolated from urinary tract infection samples. MATERIALS AND METHODS: In this study, 298 Gram negative bacteria isolated from 6739 urine specimens were identified by biochemical standard tests. Antimicrobial susceptibility testing was performed by the disk diffusion method. Extended-spectrum β-lactamase (ESBL)-producing strains were also detected by the double-disk synergy test. The presence of blaTEM and blaSHV genes in the strains studied was ascertained by polymerase chain reaction. RESULTS: Of all Gram negative bacteria, Escherichia coli (69.1%) was the most common strain, followed by Klebsiella sp. (12.1%), Enterobacter sp. (8.4%), Proteus sp. (4.4%), Citrobacter (4%) and Pseudomonas sp. (2%). The most antibiotic resistance was shown to tetracycline (95.16%), nalidixic acid (89.78%) and gentamycin (73.20%) antibiotics. Among all the strains tested, 35 isolates (11.75%) expressed ESBL activity. The prevalence of TEM and SHV positivity among these isolates was 34.29%, followed by TEM (31.43%), TEM and SHV negativity (20.0%) and SHV (14.29%), respectively. CONCLUSIONS: Regular monitoring of antimicrobial drug resistance seems necessary to improve our guidelines in the use of the empirical antibiotic therapy.201424943757
215760.9998Prevalence and antibiotic resistance pattern of bacteria isolated from urinary tract infections in Northern Iran. BACKGROUND: This study aimed to investigate the bacteria associated with urinary tract infection (UTI) and antibiotic susceptibility pattern of the isolates during 2013-2015 in Northern Iran. MATERIALS AND METHODS: Overall 3798 patients with clinical symptoms of UTI were subjected as samples, and they were cultured and pure isolated bacteria were identified using biochemical tests and subjected to antibiogram assessment using disc diffusion method. RESULTS: Totally, 568 (14.96%) from 3798 patients had positive UTI. Four hundred and ninety-seven (87.5%) from 568 isolated bacteria were resistant to at least one antibiotic. Escherichia coli, Staphylococcus spp., and Pseudomonas spp. were the most prevalent bacteria. Isolated bacteria indicated the highest antibiotic resistance to methicillin (76.06%) and ampicillin (89.29%) and also revealed the most sensitivity to imipenem (99.1%) and amikacin (91.57%). Statistical analysis of the resistance pattern trend during 3 years indicated the insignificant increase (P > 0.05) in antibiotic resistance of the isolates. CONCLUSION: The results of this study revealed a great concern for emerging UTI-related multidrug-resistant strains of bacteria causing UTI in Iran.201729026424
112670.9998Comparison of beta-lactamase genes in clinical and food bacterial isolates in India. BACKGROUND: The present study aimed to determine the occurrence of human disease-causing enteric bacteria on raw vegetables, fruits, meats, and milk products sold in Indian markets. The study further aimed to analyze antibiotic resistance rates and the presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC. METHODOLOGY: Twenty-three food-borne and 23 clinical isolates were compared for antibiotic resistance rates and the presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC. Swabs were taken from unwashed and washed food items, as well as from some chopped food specimens, and inoculated on appropriate culture medium. Bacterial isolates were identified, antibiotic susceptibility was performed, and bla genes were detected by PCR. RESULTS: Thirty-eight bacterial isolates were obtained from the food specimens, of which 36 (94.7%) were Gram-negative and two (5.3%) were Gram-positive bacterial species. Klebsiella pneumoniae was the most prevalent (52.6%; 20/38) bacterial species isolated, followed by Citrobacter koseri (18.4%; 7/38). In food isolates, the majority of the isolates were resistant to gentamicin (33.3%) followed by amikacin (11.1%). Resistance to a third-generation cephalosporin was noticed in only 5.6% isolates. However, in clinical isolates, maximal resistance was noticed against third-generation cephalosporins followed by ofloxacin in 91.3% and 86.9% isolates, respectively, and resistance to gentamicin and amikacin was noticed in 78.3% and 52.2% isolates, respectively. The presence of blaCTX-M, blaTEM, blaSHV, and blaAmpC in clinical isolates was noticed in 52.2%, 60.9%, 21.7%, and 43.5%, respectively. None of the isolates from food showed the presence of any of the above-cited genes. CONCLUSIONS: Probably bla genes have not yet disseminated to raw-food vegetation in India.200919801801
116480.9998The distribution of beta lactamase genes in Escherichia coli phylotypes isolated from diarrhea and UTI cases in northwest Iran. BACKGROUND: Pathogenic Escherichia coli strains are a common cause of intestinal and extra-intestinal infections, especially in developing countries. Extended spectrum beta-lactamases (ESBLS), a heterogeneous group of plasmid-encoded beta-lactamases, are common throughout the world. OBJECTIVES: The aim of the present study was to determine the phenotypic and genotypic characteristics of ESBLS produced by E. coli isolates taken from patients with diarrhea and urinary tract infections (UTI) in northwest Iran. MATERIAL AND METHODS: A total of 132 E. coli isolates (92 isolates from UTI and 40 isolates from diarrheic cases) were recovered and confirmed by biochemical tests. The isolates were examined for blaTEM and blaSHV genes and phylogenetic background by two multiplex PCR assays. The isolates were tested for antibiotic susceptibility against nine antibiotic agents by the disk diffusion method. RESULTS: The phylogenetic analysis showed that the UTI isolates mostly fell into phylo-group B2, followed by D, while the diarrheic isolates belonged to phylo-groups D and A. Out of 92 UTI isolates, 29.3% and 17.4% possessed blaTEM and blaSHV genes, respectively. Ten diarrheic isolates were positive for blaTEM, two isolates possessed the blaSHV gene, and one isolate was positive for both genes. The UTI isolates that were positive for blaTEM and blaSHV genes mostly belonged to phylo-groups D and B2, whereas the diarrhea isolates were in phylo-groups D and A. Phylogenetic group D isolates have an accumulation of ESBLS genes in the diarrheic and UTI isolates. In both the UTI and diarrhea isolates, the maximum rate of resistance was against cefazolin, and the minimum rate of resistance was against nitrofurantoin. Twenty-four antibiotic resistance patterns were observed among the isolates. The amikacin, ciprofloxacin, cefotaxime, cefuroxime, cefazolin, gentamicin, nalidixic acid and trimethoprim/sulfamethoxazole resistance pattern was the most prevalent in the isolates that belonged to phylo-group D. CONCLUSIONS: The correct choice of effective antibiotic policy is needed to limit the spread of antibiotic resistance in bacteria.201425166436
217790.9998Evaluating the Frequency of aac(6')-IIa, ant(2″)-I, intl1, and intl2 Genes in Aminoglycosides Resistant Klebsiella pneumoniae Isolates Obtained from Hospitalized Patients in Yazd, Iran. BACKGROUND: Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that could be resistant to many antimicrobial agents. Resistance genes can be carried among gram-negative bacteria by integrons. Enzymatic inactivation is the most important mechanism of resistance to aminoglycosides. In this study, the frequencies of two important resistance gene aac(6')-IIa and ant(2″)-I, and genes coding integrase I and II, in K. pneumoniae isolates resistant to aminoglycosides were evaluated. METHODS: In this cross-sectional study, an attempt was made to assess the antibiotic susceptibility of 130 K. pneumoniae isolates obtained from different samples of patients hospitalized in training hospitals of Yazd evaluated by disk diffusion method. The frequencies of aac(6')-IIa, ant(2″)-I, intl1, and intl2 genes were determined by PCR method. Data were analyzed by chi-square method using SPSS software (Ver. 16). RESULTS: our results showed that resistance to gentamicin, tobramycin, kanamycin, and amikacin were 34.6, 33.8, 43.8, and 14.6%, respectively. The frequencies of aac (6')-IIa, ant(2″)-I, intl1, and intl2 genes were 44.6, 27.7, 90, and 0%, respectively. CONCLUSION: This study showed there are high frequencies of genes coding aminoglycosides resistance in K. pneumoniae isolates. Hence, it is very important to monitor and inhibit the spread of antibiotic resistance genes.201829849989
2147100.9998Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India. This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.201627403451
2185110.9998Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. OBJECTIVES: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. MATERIALS AND METHODS: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. RESULTS: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. CONCLUSIONS: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk.202033409311
1467120.9998Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. BACKGROUND AND OBJECTIVES: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the bla (CTX-M-15) and bla (OXA-48) genes in Gram-negative isolates. MATERIALS AND METHODS: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes. RESULTS: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of bla (OXA-48) and bla (CTX-M-15) genes was 25% and 50%, respectively. CONCLUSION: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards.201931719958
1469130.9998Investigation of Bacterial Infections and Antibiotic Resistance Patterns Among Clinical Isolates in the Center of Iran. Introduction: Bacterial infection is a considerable problem in hospitals. Thus, this study was executed to appraise the rampancy of bacterial infections, antimicrobial susceptibility patterns, and molecular characterization of isolates among patients in Bafgh Hospital in Yazd, Iran, in 2020. Methods: In the current study, we surveyed 103 isolates of 400 clinical specimens from early March 2020 to September 2020 in Bafgh Hospital. We assessed phenotypic traits and antibiotic resistance with standard microbiological methods. Phenotypic methods were also performed to identify extended-spectrum beta-lactamases (ESBLs) in Gram-negative bacilli, inducible clindamycin resistance, and methicillin resistance in Staphylococcus according to CLSI guidelines. Molecular identification of isolates was done by conventional PCR 16S rRNA gene sequencing. Furthermore, we investigated the prevalence of resistant genes including bla (TEM), bla (PER-2), bla (CTX-M), bla (SHV), and bla (VEB-1) in Gram-negative bacteria and the mecA gene in staphylococcal species. Results: From 400 different clinical specimens, 103 isolates of Gram-positive and Gram-negative bacteria were isolated. Based on phenotypic and molecular methods, most common isolates were Escherichia coli (53 isolates), followed by Klebsiella spp. (18 isolates), and Staphylococcus aureus (16 isolates). The highest resistance was found in Gram-positive bacteria to erythromycin (66.67%) and penicillin (55.56%), while considering Gram-negative bacteria, the most resistant was cefixime (49.41%) and trimethoprim-sulfamethoxazole (47.05%). In addition, out of 16 S. aureus isolates, 62.5% and 17.65% were resistant to methicillin and clindamycin, respectively. Among 83 Gram-negative isolates, 22.89% were ESBL-positive. The prevalence of bla (SHV), bla (PER2), bla (TEM), bla (CTX-M), and bla (VEB-1) genes was 78.31%, 59.03%, 40.96%, 30.12%, and 0%, respectively. Conclusions: The outbreak of bacterial infections is relatively high in hospitals. Recognizing risk agents for bacterial infections and restricting the administration of multidrug-resistant antibiotics is a substantial measure that must be taken to prevent patient mortality.202540822981
2174140.9998Frequency of Beta-Lactamase Antibiotic Resistance Genes in Escherichia Coli and Klebsiella pneumoniae. BACKGROUND: This cross-sectional study was performed on isolates of Klebsiella pneumoniae, and E.coli from clinical specimens of patients admitted to Sayyad Shirazi Hospital by census sampling method in 2019. Antibiogram testing was performed using the disk diffusion method as defined by the Clinical and Laboratory Standards Organization for performing this test. Finally, the abundance of genes was evaluated by PCR using specific primers. Frequency, percentage, mean±SD were used to describe the data. Chi-square and Fisher's exact tests were used to compare the presence and absence of the studied genes alone and in the presence of each other. RESULT: This study was performed on 130 positive samples, isolated from 32 (24.6%) males and 98 (65.4%) females with a mean age of 43.78 ± 21.72. From the total number of 130 isolates, 84 (64.6%) consisted of E.coli, and 46 (35.4%) were Klebsiella. Most of the cultures were urine and vaginal (61.5%). The highest antibiotic resistance in isolates was cephalexin and cefazolin (67.9% in E.coli & 63% in Klebsiella). Colistin was identified as the most effective antibiotic (100%) in both. AMPC extendedspectrum β-lactamase genes were present in 40 (30.8%) isolates. The highest frequency about the gene pattern of AMPC positive β-lactamase bacteria was correlated to DHA, FOX, and CIT genes, while none of the samples contained the MOX β-lactamase gene. E.coli and Klebsiella beta-lactamase-producing AMPC isolates were also significantly correlated with antibiotic resistance to the cephalosporin class (P <0.05). CONCLUSION: This study indicated a high percentage of resistance to third and fourth generation cephalosporins. Hence, careful antibiogram tests and prevention of antibiotic overuse in infections caused by AMPC-producing organisms and screening of clinical samples for the resistance mentioned above genes and providing effective strategies to help diagnose and apply appropriate treatments and change antibiotic usage strategies can partially prevent the transmission of this resistance.202134483624
1129150.9998Genotypic and phenotypic profiles of antibiotic-resistant bacteria isolated from hospitalised patients in Bangladesh. OBJECTIVES: Characterisation of resistance phenotype and genotype is crucial to understanding the burden and transmission of antimicrobial resistance (AMR). This study aims to determine the spectrum of AMR and associated genes encoding aminoglycoside, macrolide and β-lactam classes of antimicrobials in bacteria isolated from hospitalised patients in Bangladesh. METHODS: 430 bacterial isolates from patients with respiratory, intestinal, wound infections and typhoid fever, presenting to clinical care from 2015 to 2019, were examined. They included Escherichia coli (n = 85); Staphylococcus aureus (n = 84); Salmonella typhi (n = 82); Klebsiella pneumoniae (n = 42); Streptococcus pneumoniae (n = 36); coagulase-negative staphylococci (n = 28); Enterococcus faecalis (n = 27); Pseudomonas aeruginosa (n = 26); and Acinetobacter baumannii (n = 20). Reconfirmation of these clinical isolates and antimicrobial susceptibility tests was performed. PCR amplification using resistance gene-specific primers was done, and the amplified products were confirmed by Sanger sequencing. RESULTS: 53% of isolates were multidrug-resistant (MDR), including 97% of Escherichia coli. There was a year-wise gradual increase in MDR isolates from 2015 to 2018, and there was an almost twofold increase in the number of MDR strains isolated in 2019 (P = 0.00058). Among the 5 extended-spectrum β-lactamases investigated, CTX-M-1 was the most prevalent (63%) followed by NDM-1 (22%); Escherichia coli was the major reservoir of these genes. The ermB (55%) and aac(6')-Ib (35%) genes were the most frequently detected macrolide and aminoglycoside resistance genes, respectively. CONCLUSION: MDR pathogens are highly prevalent in hospital settings of Bangladesh.202133838068
1125160.9998Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. AIM: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. MATERIALS AND METHODS: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR) for detection of bla(CTX-M), bla(TEM), bla(SHV), bla(VIM), tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL), metallo-β-lactamase, and tetracycline resistance. RESULTS: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter) were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50) were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, bla(CTX-M) was detected in 18 (36%) isolates, and 6 (12%) harbored bla(TEM) genes in PCR. None of the isolates carried bla(SHV) genes. Further, in this study, 5 (10%) isolates harbored tet(A) gene, and 8 (16%) isolates carried tet(B) gene. No tet(C) gene was detected from the isolates. CONCLUSION: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.201728620255
1470170.9998Occurrence of extended-spectrum beta-lactamase (ESBL) in Gram-negative bacterial isolates from high vaginal swabs in a teaching hospital in Nigeria. OBJECTIVE: This study aims to determine the antibiotic susceptibility pattern and incidence of extended-spectrum beta-lactamase (ESBL) genes in isolates from vaginal discharge of symptomatic female patients. STUDY DESIGN: Cross-sectional study. PARTICIPANT: Pregnant and non-pregnant women between 18 and 50 years who presented with genital tract infection and had not received antimicrobial therapy in the two weeks prior. INTERVENTIONS: The study determines the prevalence of bacteria in the vaginal discharge of female patients of reproductive age, the antibiotic susceptibility pattern of the isolates and the incidence of ESBL genes in Gram-negative isolates from the sample. RESULTS: Bacteria were found in 74 (80.4%) and 88 (81.5%) samples from pregnant and non-pregnant women, respectively. Escherichia coli (n=48; 27.6%) occurred mostly in the samples, followed by Staphylococcus aureus (n=38; 21.8%). Among the Gram-positive, all Streptococcus. pneumoniae and Staphylococcus. epidermidis were sensitive to imipenem and meropenem (100%). S. aureus was the most resistant to cephalexin (71.4%), cefoxitin (60.5%) carbenicillin (60.5%) and ceftazidime (57.9%). Escherichia coli was highly resistant to carbenicillin (85.4%), cephalexin (64.6%) and cefotaxime (56.3%). Klebsiella pneumoniae showed the highest level of imipenem resistance (31.6%), followed by E. coli (29.2%). The prevalence of ESBL genes in Gram-negative isolates from pregnant women was 25.6% (11/43), compared to 30.3% (23/76) in non-pregnant women. Both bla (TEM) and bla (SHV) had the highest occurrence of 14.3% (17/119) of the isolates. CONCLUSION: This study found Gram-negative pathogens isolated from the vaginal tract of both pregnant and non-pregnant women to be resistant to multiple antibiotics and have ESBL genes. FUNDING: None declared.202440585516
2164180.9998Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a U.S. military hospital. Infections with multidrug-resistant Acinetobacter baumannii-Acinetobacter calcoaceticus complex bacteria complicate the care of U.S. military personnel and civilians worldwide. One hundred thirty-three isolates from 89 patients at our facility during 2006 and 2007 were tested by disk diffusion, Etest, and broth microdilution for susceptibility to tetracycline, doxycycline, minocycline, and tigecycline. Minocycline was the most active in vitro, with 90% of the isolates tested susceptible. Susceptibilities varied significantly with the testing method. The acquired tetracycline resistance genes tetA, tetB, and tetA(39) were present in the isolates.200919307365
2151190.9998Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence.202439011020