# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2146 | 0 | 1.0000 | Study of aminoglycoside resistance genes in enterococcus and salmonella strains isolated from ilam and milad hospitals, iran. BACKGROUND: Aminoglycosides are a group of antibiotics that have been widely used in the treatment of life-threatening infections of Gram-negative bacteria. OBJECTIVES: This study aimed to evaluate the frequency of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from clinical samples by PCR. MATERIALS AND METHODS: In this study, 140 and 79 isolates of Enterococcus and Salmonella were collected, respectively. After phenotypic biochemical confirmation, 117 and 77 isolates were identified as Enterococcus and Salmonella, respectively. After the biochemical identification of the isolates, antibiotic susceptibility for screening of resistance was done using the Kirby-Bauer method for gentamicin, amikacin, kanamycin, tobramycin and netilmycin. DNA was extracted from resistant strains and the presence of acc (3)-Ia, aac (3')-Ib, acc (6)-IIa ,16SrRNA methylase genes (armA and rat) was detected by PCR amplification using special primers and positive controls. RESULTS: Enterococcus isolates have the highest prevalence of resistance to both kanamycin and amikacin (68.4%), and Salmonella isolates have the highest prevalence of resistance against kanamycin (6.9%). Ninety-three and 26 isolates of Enterococcus and Salmonella at least were resistant against one of the aminoglycosides, respectively. Moreover, 72.04%, 66.7%, and 36.6% of the resistant strains of Enterococcus had the aac (3')-Ia, aac (3')-IIa, and acc (6')-Ib genes, respectively. None of the Salmonella isolates have the studied aminoglycoside genes. CONCLUSIONS: Our results indicate that acetylation genes have an important role in aminoglycoside resistance of the Enterococcus isolates from clinical samples. Moreover, Salmonella strains indicate very low level of aminoglycoside resistance, and aminoglycoside resistance genes were not found in Salmonella isolates. These results indicate that other resistance mechanisms, including efflux pumps have an important role in aminoglycoside resistance of Salmonella. | 2015 | 26034551 |
| 2147 | 1 | 0.9999 | Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India. This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. | 2016 | 27403451 |
| 2144 | 2 | 0.9999 | Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains. OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%), amoxicillin/clavulanic acid (47.3%), ampicillin (96.4%), cephalexin (99%), cefoxitin (23%), penicillin (99%), clindamycin (34.2%) and tetracycline (53.5%). P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains. | 2011 | 21655744 |
| 2163 | 3 | 0.9999 | Molecular epidemiology of aminoglycosides resistance in acinetobacter spp. With emergence of multidrug-resistant strains. BACKGROUND: Acinetobacter spp. is characterized as an important nosocomial pathogen and increasing antimicrobial resistance. Our aim was to evaluate antimicrobial susceptibility and aminoglycosides resistance genes of Acinetobacter spp. isolated from hospitalized patients. METHODS: Sixty isolates were identified as Acinetobacter species. The isolates were tested for antibiotic resistance by disc diffusion method for 12 antimicrobials. The presence of aphA6, aacC1 aadA1, and aadB genes were detected using PCR. RESULTS: From the isolated Acinetobacter spp. the highest resistance rate showed against amikacin, tobramycin, and ceftazidim, respectively; while isolated bacteria were more sensitive to ampicillic/subactam. More than 66% of the isolates were resistant to at least three classes of antibiotics, and 27.5% of MDR strains were resistant to all seven tested classes of antimicrobials. The higher MDR rate presented in bacteria isolated from the ICU and blood samples. More than 60% of the MDR bacteria were resistance to amikacin, ceftazidim, ciprofloxacin, piperacillin/tazobactam, doxycycline, tobramycin and levofloxacin. Also, more than 60% of the isolates contained phosphotransferase aphA6, and acetyltransferase genes aacC1, but adenylyltransferase genes aadA1 (41.7%), and aadB (3.3%) were less prominent. 21.7% of the strains contain three aminoglycoside resistance genes (aphA6, aacC1 and aadA1). CONCLUSION: The rising trend of resistance to aminoglycosides poses an alarming threat to treatment of such infections. The findings showed that clinical isolates of Acinetobacter spp. in our hospital carrying various kinds of aminoglycoside resistance genes. | 2010 | 23113008 |
| 2673 | 4 | 0.9999 | Geographical and ecological analysis of resistance, coresistance, and coupled resistance to antimicrobials in respiratory pathogenic bacteria in Spain. A multicenter susceptibility surveillance (the S.A.U.C.E. project) including 2,721 Streptococcus pneumoniae, 3,174 Streptococcus pyogenes, and 2,645 Haemophilus influenzae consecutive isolates was carried out in 25 hospitals all over Spain from November 2001 to October 2002 to evaluate the current epidemiology of resistance of the main bacteria involved in community-acquired respiratory tract infections. Susceptibility testing was performed in a single centralized laboratory by a broth microdilution method. The prevalence of resistant S. pneumoniae strains was 0.4% for cefotaxime, 4.4% for amoxicillin and amoxicillin-clavulanic acid, 25.6% for cefuroxime-axetil, 34.5% for erythromycin, clarithromycin, and azithromycin, and 36.0% for cefaclor. Phenotypes of resistance to erythromycin were MLS(B) (macrolide-lincosamide-streptogramin B) in 89.9% (gene ermB) and M (macrolide) in 9.7% of cases (gene mefA). No strain harbored both genes simultaneously. Serotypes 19, 6, 23, 14, and 3 were the most prevalent, accounting for 54.6% of the total isolates. Resistance to macrolides seems to be the most alarming point, since among penicillin-susceptible isolates it reached 15.1% compared to 55.8% among penicillin-resistant strains. Geographically, a number of regions had rates of erythromycin resistance above 40% (even higher in children). Resistance to erythromycin was also high in S. pyogenes isolates: mean regional 33.2%, beta-lactamase-producing H. influenzae were 20%, whereas 4.4% had a beta-lactamase-negative, ampicillin-resistant phenotype. We highlight the importance of different geographical frequencies of coresistance (associations of resistance to different drugs within the same species) and coupled resistance (association of resistance between different species) probably resulting from different local coselective events. | 2005 | 15855520 |
| 2152 | 5 | 0.9999 | Immunological and molecular detection of biofilm formation and antibiotic resistance genes of Pseudomonas aeruginosa isolated from urinary tract. BACKGROUND AND OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common causes of hospital-acquired infections. It is associated with high morbidity and healthcare costs, especially when appropriate antibiotic treatment is delayed. Antibiotic selection for patients with P. aeruginosa infections is challenging due to the bacteria's inherent resistance to many commercially available antibiotics. This study investigated antibiotic-resistance genes in isolated bacteria, which play a key role in disease pathogenesis. MATERIALS AND METHODS: 100 samples out of the 140 samples collected from urinary tract infections (UTIs) cases between December 15(th), 2022, and April 15(th), 2023, were included in the study. Identification of bacterial isolates was based on colony morphology, microscopic examination, biochemical tests, and the Vitek-2 system. Antibiotic resistance genes; Aph(3)-llla, ParC, Tet/tet(M), and aac(6´)-Ib-cr were tested by polymerase chain reaction (PCR). RESULTS: The obtained results were based on bacterial identifications of 81 clinical samples. Only 26 (32%) of these isolates were P. aeruginosa, 21 (26%) were Escherichia coli, and 18 (22.2%) were other bacteria. These isolates were used to detect four genes including tet(M), Aph(3)-llla, Par-c, and aac(6´)-Ib-cr. Four types of primers were used for PCR detection. The results showed that 11/14 (78.57%) carried the tet(M) gene, 10/14 (71.42%) carried the Aph(3)-llla gene, 14/14 (100%) carried the Par-c gene, and 10/14 (71.42%) of the isolates carried the aac(6´)-Ib-cr gene. The biofilm formation examining the esp gene, showed that 9 (64.28) isolates carried this gene. CONCLUSION: The inability of antibiotics to penetrate biofilms is an important factor contributing to the antibiotic tolerance of bacterial biofilms. | 2025 | 40612720 |
| 5428 | 6 | 0.9999 | Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses. BACKGROUND: This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. METHODS: Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. RESULTS: A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. CONCLUSIONS: In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated. | 2014 | 23659425 |
| 2670 | 7 | 0.9998 | Molecular characterisation and antimicrobial resistance of Streptococcus agalactiae isolates from dairy farms in China. INTRODUCTION: Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. MATERIAL AND METHODS: A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. RESULTS: The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. CONCLUSION: The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria. | 2023 | 38143824 |
| 2701 | 8 | 0.9998 | Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. BACKGROUND AND AIM: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. MATERIALS AND METHODS: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. RESULTS: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. CONCLUSION: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health. | 2020 | 32255968 |
| 2142 | 9 | 0.9998 | Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes. | 2020 | 32495224 |
| 892 | 10 | 0.9998 | Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad. BACKGROUND: Recent emergence of high-level tigecycline resistance is mediated by tet(X) genes in Gram-negative bacteria, which undoubtedly constitutes a serious threat for public health worldwide. This study aims to identify tigecycline non-susceptible isolates and detect the presence of genes that are responsible for tigecycline resistance among local isolates in Iraq for the first time. METHODS: Thirteen clinical isolates of Klebsiella pneumonia, Acinetobacter baumannii and Pseudomonas aeruginosa tigecycline non-susceptible were investigated from blood, sputum and burns specimens. The susceptibility of different antibiotics was tested by the VITEK-2 system. To detect tigecycline resistance genes, PCR was employed. RESULTS: Strains studied in this work were extremely drug-resistant and they were resistant to most antibiotic classes that were studied. The plasmid-encoded tet(X), tet(X1), tet(X2), tet(X3), tet(X4), tet(X5), tet(M) and tet(O) genes were not detected in the 13 isolates. The results showed that there is a clear presence of tet(A) and tet(B) genes in tigecycline non-susceptible isolates. All 13 (100%) tigecycline non-susceptible K. pneumoniae, A. baumannii and P. aeruginosa isolates harbored the tet(B) gene. In contrast, 4 (30.77%) tigecycline non-susceptible P. aeruginosa isolates harbored the tet(A) gene and there was no tigecycline non-susceptible A. baumannii isolate harboring the tet(A) gene (0%), but one (7.69%) tigecycline non-susceptible K. pneumoniae isolate harbored the tet(A) gene. A phylogenetic tree, which is based on the nucleotide sequences of the tet(A) gene, showed that the sequence of the local isolate was 87% similar to the nucleotide sequences for all the isolates used for comparison from GenBank and the local isolate displayed genetic diversity. CONCLUSIONS: According to this study, tet(B) and tet(A) play an important role in the appearance of tigecycline non-susceptible Gram-negative isolates. | 2022 | 36207501 |
| 2291 | 11 | 0.9998 | Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Fluoroquinolones have been used for prophylaxis against infections in cancer patients but their impact on the resistance mechanisms still require further investigation. To elucidate mechanisms underlying ciprofloxacin (CIP) resistance in Gram-negative pathogens causing infections to cancer patients, 169 isolates were investigated. Broth microdilution assays showed high-level CIP resistance in 89.3% of the isolates. Target site mutations were analyzed using PCR and DNA sequencing in 15 selected isolates. Of them, all had gyrA mutations (codons 83 and 87) with parC mutations (codons 80 and 84) in 93.3%. All isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes and 56.8% of them were positive in this respect. Among PMQR genes, aac(6')-Ib-cr predominated (42.6%) while qnr genes were harbored by 32.5%. This comprised qnrS in 26.6% and qnrB in 6.5%. Clonality of the qnr-positive isolates using ERIC-PCR revealed that most of them were not clonal. CIP MIC reduction by CCCP, an efflux pump inhibitor, was studied and the results revealed that contribution of efflux activity was observed in 18.3% of the isolates. Furthermore, most fluoroquinolone resistance mechanisms were detected among Gram-negative isolates recovered from cancer patients. Target site mutations had the highest impact on CIP resistance as compared to PMQRs and efflux activity. | 2018 | 30115947 |
| 968 | 12 | 0.9998 | Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa. | 2010 | 20145377 |
| 2667 | 13 | 0.9998 | Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid. | 2016 | 27622161 |
| 2149 | 14 | 0.9998 | Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Urinary tract infection (UTI) by antibiotic-resistant strains has become increasingly problematic, with trends that differ from country to country. This study examined cross-resistance and the mechanisms of cephalosporin resistance in UTI-causative bacteria isolated in Indonesia. Antibiotic susceptibility tests based on Clinical Laboratory Standards Institute (CLSI) standards were done for UTI-causative strains (n = 50) isolated from patients in Indonesia in 2015-2016 and showed resistance against the third-generation cephalosporin. Mechanistic studies were carried out to confirm the presence of extended-spectrum β-lactamase (ESBL) genes, carbapenemase-related genes, the fosA3 gene related to fosfomycin resistance, and mutations of quinolone-resistance-related genes. Isolated UTI-causative bacteria included Escherichia coli (64.0%), Pseudomonas aeruginosa (16.0%), Klebsiella pneumoniae (10.0%), and others (10.0%). These strains showed 96.0% susceptibility to amikacin, 76.0% to fosfomycin, 90.0% to imipenem, 28.0% to levofloxacin, 92.0% to meropenem, and 74.0% to tazobactam/piperacillin. ESBL was produced by 68.0% of these strains. Mechanistic studies found no strains with carbapenemase genes but 6.0% of strains had the fosA3 gene. Seventy-two % of the strains had mutations in the gyrA gene and 74.0% in the parC gene. Most E. coli strains (87.5%) had Ser-83 → Leu and Asp-87 → Asn in gyrA and 93.8% of E. coli had Ser-80 → Ile in parC. There were significant correlations among mutations in gyrA and parC, and fosA3 gene detection (P < 0.05), respectively. To our knowledge, this is the first mechanistic study of antibiotic-cross-resistant UTI-causative bacteria in Indonesia. Further studies with a longer period of observation are necessary, especially for changes in carbapenem resistance without carbapenemase-related genes. | 2021 | 33713209 |
| 2355 | 15 | 0.9998 | Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level. | 2012 | 24669633 |
| 2389 | 16 | 0.9998 | Antibiotic Resistance of LACTOBACILLUS Strains. The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively). | 2019 | 31555856 |
| 1955 | 17 | 0.9998 | Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. BACKGROUND & OBJECTIVES: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. METHODS: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. RESULTS: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. INTERPRETATION & CONCLUSIONS: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources. | 2019 | 31219088 |
| 2145 | 18 | 0.9998 | Resistance to tetracycline and β-lactams and distribution of resistance markers in enteric microorganisms and pseudomonads isolated from the oral cavity. This study evaluated the occurrence of enteric bacteria and pseudomonads resistant to tetracycline and β-lactams in the oral cavity of patients exhibiting gingivitis (n=89), periodontitis (n=79), periodontally healthy (n=50) and wearing complete dentures (n=41). Microbial identification and presence of resistance markers associated with the production of β-lactamases and tetracycline resistance were performed by using biochemical tests and PCR. Susceptibility tests were carried out in 201 isolates of enteric cocci and rods. Resistance to ampicillin, amoxicillin/clavulanic acid, imipenem, meropenem and tetracycline was detected in 57.4%, 34.6%, 2.4%, 1.9% and 36.5% of the isolates, respectively. β-lactamase production was observed in 41.2% of tested microorganisms, while the most commonly found β-lactamase genetic determinant was gene blaTEM. Tetracycline resistance was disseminated and a wide scope of tet genes were detected in all studied microbial genus. | 2009 | 21499650 |
| 1272 | 19 | 0.9998 | Multiple Antimicrobial Resistance and Novel Point Mutation in Fluoroquinolone-Resistant Escherichia coli Isolates from Mangalore, India. Fluoroquinolone resistance in bacteria is usually associated with mutations in the topoisomerase regions. We report a novel point mutation in fluoroquinolone-resistant Escherichia coli strains. E. coli isolated from the environment in and around Mangalore, India, were examined for their antimicrobial resistance profile to 12 antibiotics and for the antibiotic resistance genes by polymerase chain reaction. Of the 67 E. coli isolated, 24 (35.8%) were sensitive to all antibiotics and 43 (64.2%) showed resistance to at least one of the 12 antibiotics used in the study. One isolate (EC10) was resistant to nine of the 12 antibiotics used. Resistance to nalidixic acid was the most common (34.32%), followed by nitrofurantoin (26.86%), tetracycline (22.38%), ampicillin (20.89%), cotrimoxazole (13.43%), ciprofloxacin (11.94%), gentamicin (10.44%), piperacillin/tazobactam (7.46%), chloramphenicol (7.46%), and cefotaxime (4.47%). Least resistance was observed for meropenem (1.49%) and none of the isolates showed resistance to imipenem. All the isolates harbored resistance genes corresponding to their antimicrobial resistance. Few quinolone-resistant isolates carried single point mutation (ser83Leu) and some had double point mutation (Ser83Leu and Asp87Asn) in gyrA. A third novel point mutation was also observed at position 50 with the change in the amino acid from tyrosine to cysteine (Tyr50Cys) in gyrA region. The study throws light on a novel point mutation in fluoroquinolone-resistant isolates. While the study helps to understand the risk and occurrence of antibiotic resistance among gram-negative bacteria from the environment, the alarming rate of antibiotic-resistant bacteria is a cause of concern in addressing infections. | 2017 | 28445079 |