# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2140 | 0 | 1.0000 | Investigation for the presence of bacteria and antimicrobial resistance genes in sea snails (Rapana venosa). INTRODUCTION AND OBJECTIVE: The aims of this study were to search for the presence of bacteria in sea snails (Rapana venosa) by using culturomics and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the antibiotic resistance/susceptibility of the sea snails. MATERIAL AND METHODS: The anti-microbial susceptibilities of Gram-negative bacteriawas assessed by the Kirby-Bauer disk diffusion method, the presence of the mcr genes (mcr-1 to -5), the major carbapenemase and β-lactamase resistant genes in Gram-negative bacteria, using mPCR method and 16S rRNA sequence analysis of A. hydrophila isolates. RESULTS: Bacterial growth accounted for 100% and 94.2% in the samples of intestine and meat, respectively, in the snails. The main organisms identified by MALDI-TOF MS were A. salmonicida subsp. salmonicida at 33.7%, followed by Raoultella ornithinolytica at 9.6% (10/104) and Staphylococcus warneri at 7.7% in meat and intestine samples. Aeromonas hydrophila/punctata (caviae), Aeromonas sobria, Klebsiella aerogenes, Klebsiella oxytoca, Raoultella planticola, Shewanella putrefaciens and Vibrio vulnificus are intrinsic or chromosomally-mediated resistant against ampicillin. No mcr genes (mcr-1 to -5), the major carbapenemase and β-lactamase resistant genes were found. Aeromonas salmonicida subsp. salmonicida showed very low levofloxacin and meropenem resistance levels at 2.9%. When the sequence was searched in the Blast database, the genome of A. hydrophila/punctata (caviae) isolate showed high similarity with the A. hydrophila sequences. CONCLUSIONS: Conclusions. The findings obtained not only provide data about the proportion of bacteria in the gut and meat of the sea snails and their antibiotic resistance/susceptibility, but also show the absence of carbapenemase, colistin, and β-lactamase resistant genes among bacterial isolates from sea snail gut microbes. | 2023 | 37387372 |
| 2143 | 1 | 0.9998 | Detection of cfxA2, cfxA3, and cfxA6 genes in beta-lactamase producing oral anaerobes. Purpose The aim of this study was to identify β-lactamase-producing oral anaerobic bacteria and screen them for the presence of cfxA and BlaTEM genes that are responsible for β-lactamase production and resistance to β-lactam antibiotics. Material and Methods Periodontal pocket debris samples were collected from 48 patients with chronic periodontitis and anaerobically cultured on blood agar plates with and without β-lactam antibiotics. Presumptive β-lactamase-producing isolates were evaluated for definite β-lactamase production using the nitrocefin slide method and identified using the API Rapid 32A system. Antimicrobial susceptibility was performed using disc diffusion and microbroth dilution tests as described by CLSI Methods. Isolates were screened for the presence of the β-lactamase-TEM (BlaTEM) and β-lactamase-cfxA genes using Polymerase Chain Reaction (PCR). Amplified PCR products were sequenced and the cfxA gene was characterized using Genbank databases. Results Seventy five percent of patients carried two species of β-lactamase-producing anaerobic bacteria that comprised 9.4% of the total number of cultivable bacteria. Fifty one percent of β-lactamase-producing strains mainly Prevotella, Porphyromonas, and Bacteroides carried the cfxA gene, whereas none of them carried blaTEM. Further characterization of the cfxA gene showed that 76.7% of these strains carried the cfxA2 gene, 14% carried cfxA3, and 9.3% carried cfxA6. The cfxA6 gene was present in three Prevotella spp. and in one Porphyromonas spp. Strains containing cfxA genes (56%) were resistant to the β-lactam antibiotics. Conclusion This study indicates that there is a high prevalence of the cfxA gene in β-lactamase-producing anaerobic oral bacteria, which may lead to drug resistance and treatment failure. | 2016 | 27119762 |
| 2142 | 2 | 0.9997 | Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes. | 2020 | 32495224 |
| 2152 | 3 | 0.9997 | Immunological and molecular detection of biofilm formation and antibiotic resistance genes of Pseudomonas aeruginosa isolated from urinary tract. BACKGROUND AND OBJECTIVES: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common causes of hospital-acquired infections. It is associated with high morbidity and healthcare costs, especially when appropriate antibiotic treatment is delayed. Antibiotic selection for patients with P. aeruginosa infections is challenging due to the bacteria's inherent resistance to many commercially available antibiotics. This study investigated antibiotic-resistance genes in isolated bacteria, which play a key role in disease pathogenesis. MATERIALS AND METHODS: 100 samples out of the 140 samples collected from urinary tract infections (UTIs) cases between December 15(th), 2022, and April 15(th), 2023, were included in the study. Identification of bacterial isolates was based on colony morphology, microscopic examination, biochemical tests, and the Vitek-2 system. Antibiotic resistance genes; Aph(3)-llla, ParC, Tet/tet(M), and aac(6´)-Ib-cr were tested by polymerase chain reaction (PCR). RESULTS: The obtained results were based on bacterial identifications of 81 clinical samples. Only 26 (32%) of these isolates were P. aeruginosa, 21 (26%) were Escherichia coli, and 18 (22.2%) were other bacteria. These isolates were used to detect four genes including tet(M), Aph(3)-llla, Par-c, and aac(6´)-Ib-cr. Four types of primers were used for PCR detection. The results showed that 11/14 (78.57%) carried the tet(M) gene, 10/14 (71.42%) carried the Aph(3)-llla gene, 14/14 (100%) carried the Par-c gene, and 10/14 (71.42%) of the isolates carried the aac(6´)-Ib-cr gene. The biofilm formation examining the esp gene, showed that 9 (64.28) isolates carried this gene. CONCLUSION: The inability of antibiotics to penetrate biofilms is an important factor contributing to the antibiotic tolerance of bacterial biofilms. | 2025 | 40612720 |
| 2667 | 4 | 0.9997 | Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid. | 2016 | 27622161 |
| 1055 | 5 | 0.9997 | Antimicrobial Susceptibility and Molecular Identification of Antibiotic Resistance Enteric Bacteria Isolated From Pigeon Feces in the City of Jeddah, Saudi Arabia. Background Due to their potential to carry a wide range of bacteria, pigeon feces may contribute to the spreading of infectious diseases in urban settings. Objective This study analyzed the presence of enteric bacteria from pigeon feces in Jeddah and their antimicrobial susceptibility and described the molecular characteristics of the carbapenem resistance genes it produced. Method Two hundred twenty-five pigeon feces specimens were collected from eight parks in Jeddah. Conventional microbiology techniques were employed to identify the isolated bacteria, and the automated Vitek2® system (bioMérieux, Marcy-l'Étoile, Lyon, France) provided additional confirmation. Kirby-Bauer disk diffusion method was utilized to screen for antimicrobial resistance. Only 50 antibiotic-resistance isolates further underwent molecular diagnosis for testing groups of carbapenems-encoding genes (blaNDM, blaSIM, and blaAIM), using multiplex polymerase chain reaction (PCR). Result Of the 50 antibiotic-resistant isolates, 28% (14/50) were Klebsiella pneumoniae, 24% (12/50) were Enterobacter cloacae, and 48% (24/50) were Escherichia coli. Ninety percent (90%) of the isolates showed resistance to cefuroxime, 56% to gentamicin, 52% to amoxicillin/clavulanic acid, and 100% to meropenem. NDM beta-lactamase was the most often discovered gene (26%) and was followed by AIM beta-lactamase (5%) Conclusion According to this study, there may be a chance for resistant K. pneumoniae, E. cloacae, and E. coli to spread amongst several hosts within the same area. Consequently, to prevent the continued occurrence and dissemination of resistant strains among other hosts in the same location, it is essential to monitor the AMR (antimicrobial resistance) of E. coli, E. cloacae, and K. pneumoniae from pigeons. | 2024 | 39310621 |
| 2147 | 6 | 0.9997 | Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India. This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. | 2016 | 27403451 |
| 1110 | 7 | 0.9997 | Antimicrobial resistance profiling of bacteria isolated from wastewater and samples of pharmaceutical industries in South India. The study was aimed to determine the phenotypic and genotypic antimicrobial resistance in the isolated bacteria from the influent (25), effluent (15), surface and ground water samples (15) surrounding the pharmaceutical industries located in south India. From 55 samples, 48 isolates of 10 different bacteria were obtained. The identified bacterial isolates were viz. Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, Corynebacterium sp., Acinetobacter sp., Aeromonas punctata, Ralstonia picketti, Staphylococcus aureus, Stenotrophomonas maltophillia, and Citrobacter freundii. The phenotypic profile of resistance through antibiotic susceptibility test was carried out against sixteen different antibiotics. Standard PCR technique was used for the detection of 12 resistance genes encoding carbapenems, quinoline, aminoglycoside, β-lactam belonging blaOXA-58(,)blaOXA-22(,)qnrA, qnrB, aac(6)-Ib-cr, aac (3)-XI, mec A, qepA, aadB, blaVIM, blaOXA-48 and blaNDM. Pseudomonas aeruginosa (1: TN/I/2020) showed presence of 3 resistance genes. qnrB (489 bp) gene was present in maximum of 7 isolates while blaVIM (196 bp) gene was present in 6 isolates. The resistance genes blaNDM (621 bp) was present in three different isolates; aac (X):6)-lb-cr (482 bp), qepA (495 bp), aadB (500 bp), blaOXA-58 (843 bp) resistant genes were present in two different isolates each among the bacterial isolates obtained in this study. In phenotypic resistance profiling by AST method, out of 16 antibiotics tested, 14 showed resistance. Similarly, in genotypic resistance profiling, among 12 resistance genes tested, a maximum of three resistance genes were noticed in Pseudomonas aeruginosa. There were positive and negative correlations observed between phenotypic and genotypic resistance among different antibiotics and their resistance genes indicating the variations in the resistance gene expression. | 2024 | 39303927 |
| 1054 | 8 | 0.9997 | Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. BACKGROUND AND AIM: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates. MATERIALS AND METHODS: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found. RESULTS: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as bla (SHV) (9.1%), bla (TEM) (100%), and bla (CTX-M) (90.9%). CONCLUSION: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties. | 2019 | 31190714 |
| 1029 | 9 | 0.9997 | Phylogenetic relationships, virulence and antimicrobial resistance properties of Klebsiella sp. isolated from pet turtles in Korea. Klebsiella sp. are responsible for a multitude of infectious diseases in both humans and animals. In this study, phylogenetic relationships, virulence and antimicrobial resistance gene properties of 16 Klebsiella sp. isolated from 49 pet turtles were investigated. The isolates including Klebsiella oxytoca (n = 13) and Klebsiella pneumoniae (n = 3) were identified using 16S rRNA gene sequencing and each species formed distinct clusters in the neighbour-joining phylogenetic tree. The prevalence of virulence genes including ureC (100%) and kfu (68·75%) was observed among the isolates using Polymerase chain reaction (PCR) assay. The fimH, mrkD and rmpA genes were detected in all K. pneumoniae while these were absent in every K. oxytoca isolate. In antimicrobial susceptibility testing, high resistance rates were observed against ampicillin (100%) and cephalothin (62·50%). The resistance rates against imipenem, tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid and ciprofloxacin were 12·50, 12·50, 12·50, 6·25 and 6·25% respectively. The presence of antimicrobial resistance genes such as plasmid-mediated quinolone resistance (PMQR) [qnrB (37·50%), qnrA (31·25%), qnrS (12·50%) and aac(6')-Ib-cr (12·50%)], extended-spectrum β-lactamase (ESBL) [bla(CTX-M) (18·75%)], β-lactamase [bla(SHV-1) (18·75%)] and tetracycline resistance [tetE (12·50%)] was observed. The results revealed that pet turtle-borne Klebsiella sp. may carry different types of virulence and antimicrobial resistance genes which represents a potential threat to public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Klebsiella sp. are nonmotile Gram-negative bacteria that are found in different environments. The virulence and antimicrobial resistance properties of pet turtle-borne Klebsiella sp. have not been studied before. Phylogenetic relationships, virulence traits and antimicrobial resistance profiles of pet turtle-borne Klebsiella sp. were characterized for the first time in Korea. Multiple virulence and antimicrobial resistance genes were observed among the isolates. The occurrence of virulence and antimicrobial resistance determinants in Klebsiella sp. may represent a potential threat to public health. | 2020 | 31671218 |
| 2678 | 10 | 0.9997 | Phenotypic and molecular characterization of multidrug-resistant mastitis causing pathogens in dairy cattle. This study focused on isolating antibiotic-resistant mastitogens from cow milk; 57% of 100 samples tested positive by California mastitis test. Bacterial species from each milk sample were isolated and identified using Vitek® 2 automated system. Out of the 167 bacterial strains isolated, 14 were multidrug-resistant (MDR) and were further identified as belonging to Staphylococcus spp. Enterobacter spp. Morganella spp. and Elizabethkingia spp. Staphylococcus strains showed the highest resistance by phenotypic and genotypic screening, with 8% of mastitis isolates identified as MDR. These MDR bacterial strains were also found to harbour antibiotic resistance genes such as mecA (21%), blaZ (43%), gyrA (50%), and gyrB (59%). The tissue culture plate assay showed 11 multidrug-resistant bacteria as strong biofilm formers and the biofilm-related atlE gene was analysed from Staphylococcal strain M33.1. The findings highlight a public health risk from resistant dairy bacteria, emphasizing prophylactic measures and responsible antimicrobial use to prevent zoonotic transmission. | 2025 | 41115007 |
| 1031 | 11 | 0.9997 | Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. The aim of the present study was to investigate the resistance profile, to detect the presence of beta-lactam resistance genes, phenotypic expression of efflux pump systems and class 1 integrons in Pseudomonas spp. strains obtained from untreated hospital effluents. Effluent samples were collected from four hospitals in Porto Alegre, RS, Brazil. Pseudomonas were isolated on MacConkey agar plates and the identification was confirmed by 16S rRNA PCR and biochemical tests. Susceptibility testing was determined by disk-diffusion method using 11 different beta-lactams and MIC assays were performed on isolates resistant to imipenem and ceftazidime. The beta-lactamase genes bla (IMP), bla (VIM), bla (SPM-1), bla (OXA-23-like), bla (OXA-24-like), bla (OXA-51-like) and the intl1 gene from class 1 integron were analysed by PCR. One hundred and twenty-four isolates were recovered and the most common species was Pseudomonas pseudoalcaligenes. The resistance found among the isolates was considered high, 62 (50%) isolates were multiresistant. No isolate carrying the beta-lactamase genes tested was found among the strains. Seven isolates showed reduction of MIC for imipenem and ceftazidime in the presence of cyanide m-chlorophenylhydrazone, indicating the hyper expression of efflux pumps. From the 124 isolates, 52 (41.9%) were identified as carrying the class 1 integron gene, intI1. Untreated hospital effluents could be a source of environmental contamination due to discharge of antimicrobial resistant bacteria which can carry integron class 1 and act as a reservoir of resistance genes and have efflux pump systems. | 2012 | 22382676 |
| 2145 | 12 | 0.9997 | Resistance to tetracycline and β-lactams and distribution of resistance markers in enteric microorganisms and pseudomonads isolated from the oral cavity. This study evaluated the occurrence of enteric bacteria and pseudomonads resistant to tetracycline and β-lactams in the oral cavity of patients exhibiting gingivitis (n=89), periodontitis (n=79), periodontally healthy (n=50) and wearing complete dentures (n=41). Microbial identification and presence of resistance markers associated with the production of β-lactamases and tetracycline resistance were performed by using biochemical tests and PCR. Susceptibility tests were carried out in 201 isolates of enteric cocci and rods. Resistance to ampicillin, amoxicillin/clavulanic acid, imipenem, meropenem and tetracycline was detected in 57.4%, 34.6%, 2.4%, 1.9% and 36.5% of the isolates, respectively. β-lactamase production was observed in 41.2% of tested microorganisms, while the most commonly found β-lactamase genetic determinant was gene blaTEM. Tetracycline resistance was disseminated and a wide scope of tet genes were detected in all studied microbial genus. | 2009 | 21499650 |
| 2677 | 13 | 0.9997 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 2137 | 14 | 0.9997 | High prevalence of antibiotic resistance and biofilm formation in Salmonella Gallinarum. BACKGROUND AND OBJECTIVES: Antibiotic resistance is an indicator of the passively acquired and circulating resistance genes. Salmonella Gallinarum significantly affects the poultry food industry. The present study is the first study of the S. Gallinarum biofilm in Iran, which is focused on the characterization of the S. Gallinarum serovars and their acquired antibiotic resistance genes circulating in poultry fields in central and northwestern Iran. MATERIALS AND METHODS: Sixty isolates of S. Gallinarum serovar were collected from feces of live poultry. The bacteria were isolated using biochemical tests and confirmed by Multiplex PCR. Biofilm formation ability and the antibacterial resistance were evaluated using both phenotypic and genotypic methods. The data were analyzed using SPSS software. RESULTS: According to Multiplex PCR for ratA, SteB, and rhs genes, all 60 S. Gallinarum serovars were Gallinarum biovars. In our study, the antibiotic resistance rate among isolated strains was as follows: Penicillin (100%), nitrofurantoin (80%), nalidixic acid (45%), cefoxitin (35%), neomycin sulfate (30%), chloramphenicol (20%), and ciprofloxacin (5%). All isolates were susceptible to imipenem, ertapenem, ceftriaxone, ceftazidime, and ceftazidime+clavulanic acid. All sixty isolates did not express the resistance genes IMP, VIM, NDM, DHA, bla(OXA48), and qnrA. On the other hand, they expressed GES (85%), qnrB (75%), Fox M (70%), SHV (60%), CITM (20%), KPC (15%), FOX (10%), MOXM (5%), and qnrS (5%). All S. Gallinarum isolates formed biofilm and expressed sdiA gene. CONCLUSION: Considering that the presence of this bacteria is equal to the death penalty to the herd, the distribution of resistance genes could be a critical alarm for pathogen monitoring programs in the region. This study showed a positive correlation between biofilm formation and 50% of tested resistance genes. Also, it was found that the most common circulating S. gallinarum biovars are multidrug-resistant. | 2023 | 37941876 |
| 923 | 15 | 0.9997 | Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention. | 2025 | 40066541 |
| 1043 | 16 | 0.9997 | Antibiotic Susceptibility Profiles of Bacterial Isolates Recovered from Abscesses in Cattle and Sheep at a Slaughterhouse in Algeria. Abscesses represent the most prominent emerging problem in the red meat industry, leading to great economic constraints and public health hazards. Data on etiological agents present in these purulent lesions in Algeria are very scarce. The aim of this study was to identify the bacteria responsible for these abscesses and to determine their antibiotic susceptibility profiles. A total of 123 samples of abscesses from 100 slaughtered sheep and 23 slaughtered cattle were cultured in several media. A total of 114 bacterial isolates were cultured from 103 abscesses. Bacteria were identified using MALDI-TOF, and antibiotic susceptibility was determined by the disk diffusion method on Mueller-Hinton agar. A total of 73.6% (n = 84) corresponded to Enterobacterales, of which four were multidrug-resistant (MDR). These isolates, together with Staphylococcus aureus, coagulase negative Staphylococci, and seven randomly chosen susceptible Escherichia coli isolates, were further characterized using WGS. Resistome analysis of the four MDR Enterobacterales isolates revealed the presence of OXA-48 carbapenemase in two Klebsiella pneumoniae ST985 and one E. coli ST10 isolates and a CTX-M-15 ESBL in one E. coli isolate ST1706. Two coagulase-negative Staphylococci isolates were found to carry the mecA gene. WGS showed the presence of different resistance genes and virulence genes. Our study revealed 5% of MDR Enterobacterales (including ESBLs and carbapenemases) identified from abscesses, thus urging the need for abscess monitoring in slaughterhouses. | 2024 | 38543576 |
| 893 | 17 | 0.9997 | Epidemiology of Acinetobacter baumannii of animal origin. Acinetobacter baumannii is an opportunistic pathogen responsible for nosocomial infections, however the origins of these bacteria remain unclear. Sixteen A. baumannii strains collected from animals slaughtered for human consumption were investigated for their susceptibility profiles, resistance islands (RIs), class 1 integrons, insertion sequence ISAba1, and bla(OXA-51)-like and bla(AmpC) genes. Polymerase chain reaction (PCR) and sequencing approaches were used to identify and type the isolates using the intrinsic gene bla(OXA-51)-like genes. Genotyping was also performed by pulsed-field gel electrophoresis (PFGE) to establish whether there was a genetic relationship between animal isolates and the main human isolates of European clones I, II and III (ECI, ECII and ECIII) known to cause major hospital outbreaks. All 16 isolates (100%) were sensitive to carbapenems, gentamicin, ciprofloxacin and piperacillin/tazobactam but were resistant to amoxicillin, cefradine, trimethoprim and chloramphenicol. Moreover, all isolates had a baseline resistance to ceftazidime, with a minimum inhibitory concentration of 4 mg/L. All isolates lacked RIs, ISAba1 and class 1 integrons but harboured bla(OXA-51)-like and bla(AmpC) genes. In addition, this study reports for the first time three new bla(OXA-51)-like genes (bla(OXA-148), bla(OXA-149) and bla(OXA-150)) isolated from bacteria in cattle, which have not been found previously in human isolates. However, all isolates recovered from pig faecal samples harboured one type of bla(OXA-51)-like (bla(OXA-51) itself), which has already been reported in human clinical isolates. From sequencing of the bla(OXA-51)-like genes from animal isolates, it was possible to identify four different clusters similar to those identified by PFGE, which in turn also distinguished these four groups from the human ECI, ECII and ECIII strains. | 2011 | 21831604 |
| 2151 | 18 | 0.9997 | Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence. | 2024 | 39011020 |
| 2146 | 19 | 0.9996 | Study of aminoglycoside resistance genes in enterococcus and salmonella strains isolated from ilam and milad hospitals, iran. BACKGROUND: Aminoglycosides are a group of antibiotics that have been widely used in the treatment of life-threatening infections of Gram-negative bacteria. OBJECTIVES: This study aimed to evaluate the frequency of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from clinical samples by PCR. MATERIALS AND METHODS: In this study, 140 and 79 isolates of Enterococcus and Salmonella were collected, respectively. After phenotypic biochemical confirmation, 117 and 77 isolates were identified as Enterococcus and Salmonella, respectively. After the biochemical identification of the isolates, antibiotic susceptibility for screening of resistance was done using the Kirby-Bauer method for gentamicin, amikacin, kanamycin, tobramycin and netilmycin. DNA was extracted from resistant strains and the presence of acc (3)-Ia, aac (3')-Ib, acc (6)-IIa ,16SrRNA methylase genes (armA and rat) was detected by PCR amplification using special primers and positive controls. RESULTS: Enterococcus isolates have the highest prevalence of resistance to both kanamycin and amikacin (68.4%), and Salmonella isolates have the highest prevalence of resistance against kanamycin (6.9%). Ninety-three and 26 isolates of Enterococcus and Salmonella at least were resistant against one of the aminoglycosides, respectively. Moreover, 72.04%, 66.7%, and 36.6% of the resistant strains of Enterococcus had the aac (3')-Ia, aac (3')-IIa, and acc (6')-Ib genes, respectively. None of the Salmonella isolates have the studied aminoglycoside genes. CONCLUSIONS: Our results indicate that acetylation genes have an important role in aminoglycoside resistance of the Enterococcus isolates from clinical samples. Moreover, Salmonella strains indicate very low level of aminoglycoside resistance, and aminoglycoside resistance genes were not found in Salmonella isolates. These results indicate that other resistance mechanisms, including efflux pumps have an important role in aminoglycoside resistance of Salmonella. | 2015 | 26034551 |