The thymidylate kinase genes from Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus confer 3'-azido-3'-deoxythymidine resistance to Escherichia coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
21301.0000The thymidylate kinase genes from Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus confer 3'-azido-3'-deoxythymidine resistance to Escherichia coli. The case number of invasive multidrug-resistant bacteria cultured from both hospital and community acquired infections is increasing at an alarming rate. Identifying the mechanisms bacteria use to escape the current antimicrobial treatments is essential to containing potential outbreaks and developing new antimicrobial therapies. Many bacteria naturally encode nonessential resistance genes on their chromosome enabling their survival and/or persistence in the presence of antibiotics using enzymes and efflux pumps. This study investigates the ability of an evolutionarily conserved essential gene to provide resistance against antimicrobial compounds. An Escherichia coli chromosomally encoded thymidylate kinase (tmk) conditional lethal strain was developed to investigate tmk alleles from relevant nosocomial pathogens. The thymidylate kinase conditional lethal strain harboring a plasmid with a tmk gene from Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA), or Pseudomonas aeruginosa downstream of an inducible promoter was examined for survival against increasing concentrations of 3'-azido-3'-deoxythymidine (AZT). The results indicate that M. tuberculosis and MRSA thymidylate kinases are deficient in cellular activity toward AZT monophosphate.201425310917
483310.9994Emerging mechanisms of fluoroquinolone resistance. Broad use of fluoroquinolones has been followed by emergence of resistance, which has been due mainly to chromosomal mutations in genes encoding the subunits of the drugs' target enzymes, DNA gyrase and topoisomerase IV, and in genes that affect the expression of diffusion channels in the outer membrane and multidrug-resistance efflux systems. Resistance emerged first in species in which single mutations were sufficient to cause clinically important levels of resistance (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). Subsequently, however, resistance has emerged in bacteria such as Campylobacter jejuni, Escherichia coli, and Neisseria gonorrhoeae, in which multiple mutations are required to generate clinically important resistance. In these circumstances, the additional epidemiologic factors of drug use in animals and human-to-human spread appear to have contributed. Resistance in Streptococcus pneumoniae, which is currently low, will require close monitoring as fluoroquinolones are used more extensively for treating respiratory tract infections.200111294736
977820.9994Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-β-lactamase, metallo-β-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.202438579010
444430.9994Mechanisms of resistance to fluoroquinolones. Fluoroquinolones have some of the properties of an 'ideal' anti-microbial agent. Because of their potent broad spectrum activity and absence of transferable mechanism of resistance or inactivating enzymes, it was hoped that clinical resistance to this useful group of drugs would not occur. However, over the years, due to intense selective pressure and relative lack of potency of the available quinolones against some strains, bacteria have evolved at least two mechanisms of resistance: (i) alteration of molecular targets, and (ii) reduction of drug accumulation. DNA gyrase and topoisomerase IV are the two molecular targets of fluoroquinolones. Mutations in specified regions (quinolone resistance-determining region) in genes coding for the gyrase and/or topoisomerase leads to clinical resistance. An efflux pump effective in pumping out hydrophilic quinolones has been described. Newer fluoroquinolones which recognize both molecular targets and have improved pharmacokinetic properties offer hope of higher potency, thereby reducing the probability of development of resistance.199910573971
444240.9994Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa-are reviewed to illustrate the varied ways in which resistant bacteria develop.200616813980
442950.9994General mechanisms of resistance to antibiotics. Resistance to antimicrobial agents may result from intrinsic properties of organisms, through mutation and through plasmid- and transposon-specified genes. beta-Lactam resistance is most frequently associated with one or more chromosomal- or plasmid-specified beta-lactamases. Recently, mutations modifying penicillin-binding proteins have been detected with increased frequency as a cause of beta-lactam resistance. Mixed mechanisms, reduced permeability and tolerance are other causes of resistance. Aminoglycoside resistance always involves some modification of drug uptake, most often due to a variety of enzymes modifying these compounds. Reduced uptake is a primary cause of resistance in anaerobic bacteria and bacteria growing anaerobically, some strains of Pseudomonas aeruginosa, and mutants that arise during antimicrobial therapy and are defective in energy-generation systems. Resistance to other antimicrobial agents is presented in tabular form.19883062000
444160.9994Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (e.g., beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa--are reviewed to illustrate the varied ways in which resistant bacteria develop.200616735149
632570.9994Repressed multidrug resistance genes in Streptomyces lividans. Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.200312937892
627580.9994Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens.201930268576
483190.9994Mechanism of quinolone resistance in anaerobic bacteria. Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.200312848726
9780100.9994Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.202134723787
4407110.9994A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps. It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to produce fluorescence of the bacterial mass, the greater the efflux capacity of the bacterial cells. We have tested and applied this method to a large number of Gram-positive and Gram-negative bacteria to detect efflux activity among these multi-drug resistant isolates. The presumptive efflux activity detected by the Ethidium Bromide-agar Cartwheel method was subsequently confirmed by the determination of the minimum inhibitory concentration for several antibiotics in the presence and absence of known efflux pump inhibitors.201323589748
793120.9994Efflux-mediated drug resistance in bacteria. Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.200414717618
4436130.9994Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance.19968807824
4830140.9994Mechanisms of resistance to quinolones. The increased use of fluoroquinolones has led to increasing resistance to these antimicrobials, with rates of resistance that vary by both organism and geographic region. Resistance to fluoroquinolones typically arises as a result of alterations in the target enzymes (DNA gyrase and topoisomerase IV) and of changes in drug entry and efflux. Mutations are selected first in the more susceptible target: DNA gyrase, in gram-negative bacteria, or topoisomerase IV, in gram-positive bacteria. Additional mutations in the next most susceptible target, as well as in genes controlling drug accumulation, augment resistance further, so that the most-resistant isolates have mutations in several genes. Resistance to quinolones can also be mediated by plasmids that produce the Qnr protein, which protects the quinolone targets from inhibition. Qnr plasmids have been found in the United States, Europe, and East Asia. Although Qnr by itself produces only low-level resistance, its presence facilitates the selection of higher-level resistance mutations, thus contributing to the alarming increase in resistance to quinolones.200515942878
6260150.9994Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992-1994. This paper gives an update on the mechanisms of bacterial resistance to fluoroquinolones. The laboratory techniques currently used to determine the mechanism(s) of resistance are outlined, including the use of restriction fragment length polymorphism and single-stranded conformational polymorphism analysis of mutations in gyrA. Alterations in gyrA have continued to be the most reported cause of resistance, with high level resistance due to 2 or more mutations in this gene. Recently, mutations in gyrA of Mycobacterium tuberculosis and Campylobacter jejuni have been described. Complementation studies with plasmid encoded cloned gyrB from Escherichia coli suggest that high fluoroquinolone resistance (minimum inhibitory concentration = 32 mg/L) in Salmonella typhimurium can be due to mutation in both gyrA and gyrB. Decreased fluoroquinolone accumulation into E. coli has been shown to be due to mutations in a number of genes at different loci. Current interest has focused upon the marRAB and soxRS loci, with mutations in genes of either loci giving rise to decreased susceptibility to several unrelated drugs, including fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams, and decreased expression of OmpF. The genetic characterisation of fluoroquinolone efflux from Staphylococcus aureus has shown that efflux occurs in both fluoroquinolone-susceptible and -resistant bacteria. The most likely cause of resistance is overexpression of NorA, giving rise to increased efflux. Recently, 2 efflux systems in Pseudomonas aeruginosa have been proposed, MexA-MexB-OprK and MexC-MexD-OprM, conferring decreased susceptibility to fluoroquinolones, tetracycline, chloramphenicol and some beta-lactams.(ABSTRACT TRUNCATED AT 250 WORDS)19958549336
4402160.9993Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections.202032052662
6186170.9993A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Triclosan is an antimicrobial agent found in many consumer products. Triclosan inhibits the bacterial fatty acid biosynthetic enzyme, enoyl-ACP reductase (FabI). Decreased susceptibility to triclosan correlates with ciprofloxacin resistance in several bacteria. In these bacteria, resistance to both drugs maps to genes encoding multi-drug efflux pumps. The focus of this study was to determine whether triclosan resistance contributes to ciprofloxacin resistance in Staphylococcus aureus. In S. aureus, triclosan resistance maps to a fabI homolog and ciprofloxacin resistance maps to genes encoding DNA gyrase, topoisomerase IV and to the multi-drug efflux pump, NorA. Using a norA overexpressing mutant, we demonstrated that upregulation of NorA does not lead to triclosan resistance. To further investigate triclosan/ciprofloxacin resistance in S. aureus, we isolated triclosan/ciprofloxacin-resistant mutants. The mutants were screened for mutations in the genes encoding the targets of triclosan and ciprofloxacin. One mutant, JJ5, was wild-type for all sequences analyzed. We next monitored the efflux of triclosan from JJ5 and determined that triclosan resistance in the mutant was not due to active efflux of the drug. Finally, gene expression profiling demonstrated that an alteration in cell membrane structural and functional gene expression is likely responsible for triclosan and ciprofloxacin resistance in JJ5.200717997080
4832180.9993Antibiotic resistance of Pseudomonas species. Pseudomonas species are highly versatile organisms with genetic and physiologic capabilities that allow them to flourish in environments hostile to most pathogenic bacteria. Within the lung of the patient with cystic fibrosis, exposed to a number of antimicrobial agents, highly resistant clones of Pseudomonas are selected. These may have acquired plasmid-mediated genes encoding a variety of beta-lactamases or aminoglycoside modifying enzymes. Frequently these resistance determinants are on transposable elements, facilitating their dissemination among the population of bacteria. Mutations in chromosomal genes can also occur, resulting in constitutive expression of normally repressed enzymes, such as the chromosomal cephalosporinase of Pseudomonas aeruginosa or Pseudomonas cepacia. These enzymes may confer resistance to the expanded-spectrum beta-lactam drugs. Decreased cellular permeability to the beta-lactams and the aminoglycosides also results in clinically significant antibiotic resistance. The development of new drugs with anti-Pseudomonas activity, beta-lactam agents and the quinolones, has improved the potential for effective chemotherapy but has not surpassed the potential of the organisms to develop resistance.19863701534
6274190.9993Transcriptomics Reveals How Minocycline-Colistin Synergy Overcomes Antibiotic Resistance in Multidrug-Resistant Klebsiella pneumoniae. Multidrug-resistant Gram-negative bacteria are a rapidly growing public health threat, and the development of novel antimicrobials has failed to keep pace with their emergence. Synergistic combinations of individually ineffective drugs present a potential solution, yet little is understood about the mechanisms of most such combinations. Here, we show that the combination of colistin (polymyxin E) and minocycline has a high rate of synergy against colistin-resistant and minocycline-intermediate or -resistant strains of Klebsiella pneumoniae. Furthermore, using transcriptome sequencing (RNA-Seq), we characterized the transcriptional profiles of these strains when treated with the drugs individually and in combination. We found a striking similarity between the transcriptional profiles of bacteria treated with the combination of colistin and minocycline at individually subinhibitory concentrations and those of the same isolates treated with minocycline alone. We observed a similar pattern with the combination of polymyxin B nonapeptide (a polymyxin B analogue that lacks intrinsic antimicrobial activity) and minocycline. We also found that genes involved in polymyxin resistance and peptidoglycan biosynthesis showed significant differential gene expression in the different treatment conditions, suggesting possible mechanisms for the antibacterial activity observed in the combination. These findings suggest that the synergistic activity of this combination against bacteria resistant to each drug alone involves sublethal outer membrane disruption by colistin, which permits increased intracellular accumulation of minocycline.202235041511