Are Enterobacteriaceae and Enterococcus Isolated from Powdered Infant Formula a Hazard for Infants? A Genomic Analysis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
209301.0000Are Enterobacteriaceae and Enterococcus Isolated from Powdered Infant Formula a Hazard for Infants? A Genomic Analysis. Powdered infant formulas (PIF) are the most used dietary substitutes that are used in order to supplement breastfeeding. However, PIF are not sterile and can be contaminated with different microorganisms. The objective of this study was to genomically characterize Enterobacteriaceae (ENT) and Enterococcus strains that were isolated from PIF. Strains were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing (WGS). Genomic typing, detection of virulence, and resistance profiles and genes were performed with the Ridom SeqSphere+ software; the comprehensive antibiotic resistance database (CARD) platform; ResFinder and PlasmidFinder tools; and by the disk diffusion method. Nineteen isolates from PIF were analyzed, including ENT such as Kosakonia cowanii, Enterobacter hormaechei, Franconibacter helveticus, Mixta calida, and lactic acid bacteria such as Enterococcus faecium. The strains exhibited resistance to beta-lactams, cephalosporins, and macrolides. Resistance genes such as AcrAB-TolC, marA, msbA, knpEF, oqxAB, fosA, bla(ACT-)(7), bla(ACT-)(14,)qacJ, oqxAB(,)aac(6')-Ii, and msr(C); and virulence genes such as astA, cheB, cheR, ompA ompX, terC, ironA, acm, and efaAfm, adem were also detected. All the analyzed strains possessed genes that produced heat-shock proteins, such as IbpA and ClpL. In PIF, the presence of ENT and Enterococcus that are multiresistant to antibiotics-together with resistance and virulence genes-pose a health risk for infants consuming these food products.202236429148
246210.9990Genetic diversity, virulence factors and drug resistance of Pantoea strains isolated from samples of fresh fruits, vegetables and soil. INTRODUCTION: Pantoea is a genus of Gram-negative bacteria from the Erwiniaceae family. These bacteria are opportunistic human pathogens which are widely distributed in plants and soil. This study aimed to reveal the genetic diversity of Pantoea isolates from food and soil, characterise them biochemically and evaluate their drug resistance. MATERIAL AND METHODS: Thirty Pantoea strains were isolated from fresh fruit (n = 2), fresh and minimally processed vegetables (n = 12) and soil samples (n = 16). The genomic DNA was isolated from cultures on nutrient agar, and species were identified by amplification of 16S ribosomal RNA and housekeeping gene fragments and confirmed by sequencing. Virulence gene presence was determined by amplification of the hcp (haemolysin-coregulated protein), vgrG (glycine-valine repeat sequence G), acrA (anti-clustered regularly interspaced short palindromic repeat protein A) and acrB genes. Isolate drug resistance was tested using the disc-diffusion and gradient strip methods. The presence of Ambler class C (AmpC) β-lactamase (βL) and extended-spectrum (ES) βL resistance genes was tested for. RESULTS: Five species were identified: P. agglomerans (n = 24), P. ananatis (n = 1), P. eucalypti (n = 1), P. conspicua (n = 1) and P. vagans (n = 2). The hcp and vrgG virulence genes were detected in 7 and 1 strain, respectively. All strains showed high resistance to cephazolin and cephuroxime, and more than half did so to ampicillin. The production of AmpC βL and ESβL was confirmed in 22 and 25 strains, respectively. Three strains of the Pantoea bacteria, including P. ananatis from leeks and P. agglomerans from arugula and soil, showed resistance to three or more antimicrobial classes. CONCLUSION: Pantoea spp., including multidrug-resistant strains, in fresh foods pose a potential risk of infection to consumers.202541064409
164820.9989Molecular characterization of the multi-drug resistant Myroides odoratimimus isolates: a whole genome sequence-based study to confirm carbapenem resistance. The bacteria belonging to the Myroides genus are opportunistic pathogens causing community or hospital-acquired infections that result in treatment failure due to antibiotic resistance. This study aimed to investigate molecular mechanisms of antibiotic resistance, clonal relatedness, and the biofilm forming capacity of the 51 multi-drug resistant Myroides odoratimimus. All isolates were screened for bla(KPC), bla(OXA), bla(VIM), bla(IMP), bla(MUS), bla(TUS), bla(NDM), and bla(B) genes by using PCR amplification. Whole genome sequencing (WGS) was applied on three randomly selected isolates for further investigation of antibiotic resistance mechanisms. Clonal relatedness was analyzed by Pulsed-field gel electrophoresis (PFGE) and the microtiter plate method was used to demonstrate biofilm formation. All isolates were positive for biofilm formation. PCR analysis resulted in a positive for only the bla(MUS-1) gene. WGS identified bla(MUS-1), erm(F), ere(D), tet(X), and sul2 genes in all strains tested. Moreover, the genomic analyses of three strains revealed that genomes contained a large number of virulence factors (VFs). PFGE yielded a clustering rate of 96%. High clonal relatedness, biofilm formation, and multi-drug resistance properties may lead to the predominance of these opportunistic pathogens in hospital environments and make them cause nosocomial infections.202438127105
169530.9988Presence of the blaTEM Gene in Commensal Neisseria spp.: A Possible Cause for the Acquired Drug Resistance Among Pathogenic Respiratory Bacteria. Background The oral microbiome consists of various bacterial genera, with Neisseria spp. being a prominent part of this niche. While Neisseria gonorrhoeae and Neisseria meningitidis are human-restricted pathogens, non-pathogenic Neisseria species like Neisseria sicca, Neisseria perflava, etc., are primarily commensals that can also behave as opportunistic pathogens. With increasing penicillin resistance in commensal Neisseria, there is a concern that these bacteria might harbor resistance genes that can be transferred to other pathogens. This study aimed to characterize the blaTEM gene (encodes for the plasmid-mediated β-lactamase enzyme that hydrolyzes the β-lactam ring) of commensal Neisseria spp. isolated from respiratory samples. Methodology The research was conducted in the Department of Clinical Microbiology at Sri Ramachandra University, Chennai. The specimens used were sputum and throat swabs, which were subjected to a series of phenotypic methods and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) for speciation. The antibiogram was determined using the Kirby-Bauer disk diffusion method, and a PCR assay was utilized to identify the blaTEM( )gene responsible for β-lactamase production. Results Out of 274 processed samples, 65 unique commensal Neisseria spp. were identified. The study highlighted the presence of the blaTEM gene in 93.9% (61) of the isolates, which is responsible for β-lactamase production. All isolates exhibited resistance to penicillin. Most blaTEM-positive commensal Neisseria spp. were susceptible to cefuroxime (83.6%), ceftriaxone (85.2%), and cefotaxime (85.2%). The high prevalence of the blaTEM gene in commensal Neisseria is alarming. The gene, found on plasmids, could potentially transfer to other related species like Neisseria gonorrhoeae and Neisseria meningitidis, as well as other Gram-negative bacilli. Conclusion The presence of resistance genes in commensal bacteria is of concern, as they might be reservoirs for resistance transfer to pathogenic strains. The study emphasizes the importance of continuous monitoring and deeper investigations into commensal bacteria, emphasizing the need for a broader community screening approach to understand resistance mechanisms in the normal microbiome.202338146567
560340.9988Phenotypic and genotypic characterizations of bacteria isolated from the respiratory microbiota of healthy turkeys with potential for probiotic composition. Desirable characteristics of Staphylococcus sp., Streptococcus sp., Bacillus sp., Klebsiella sp., Escherichia coli, and Pseudomonas pseudoalcaligenes isolated from the trachea of healthy turkeys were evaluated as probiotic candidates in the search for new alternatives to solve antimicrobial resistance issues in poultry. In current study phenotypic and genotypic capacity to produce bacteriocin-like substances, efficacy to inhibit the growth of avian pathogens, susceptibility to antimicrobials of bacteria isolated from the respiratory microbiota of healthy turkeys, and the presence of virulence-associated genes (VAGs) predictors of Avian Pathogenic Escherichia coli (APEC) were evaluated. Nine E. coli and one Klebsiella sp. strains produced bacteriocin-like substances, and all harbored the cvaA gene. Some strains also showed antagonistic activity against APEC. Multidrug-resistant profile was found in 54% of the strains. Six strains of bacteriocin-like substances producing E. coli also harbored 3-5 VAGs. The study showed that two bacterial genuses (Klebsiella sp. and E. coli) present desirable probiotic characteristics. Our results identified strains with potential for poultry's respiratory probiotic.202437707656
90850.9988Multidrug-resistant Raoultella ornithinolytica misidentified as Klebsiella oxytoca carrying blaOXA β-lactamases: antimicrobial profile and genomic characterization. Class D β-lactamases OXA-232 and OXA-48 hydrolyze penicillin, cephalosporins and carbapenems, limiting the pharmacological therapeutics in bacteraemia. OXA producer microorganisms are considered a great emergent threat, especially in nosocomial environments. To determine the resistance profile and genomic characterization of two isolates initially identified as potential carbapenemase-producer Klebsiella oxytoca in a third level hospital. Automated platform BD Phoenix-100 System was used to identify and to biochemically characterize both isolates. Furthermore, the resistance profile was determined through CLSI methods and the whole genome sequences were obtained using Next-Generation Sequencing. Resistance genes were analyzed, and the virtual fingerprinting was determined to corroborate the similarity with related bacteria. Both strains correspond to Raoultella ornithinolytica carrying OXA 232 and OXA-48 genes, confirming the class D β-lactamases assay results. Here, we present the genetic and phenotypic analysis of multidrug resistance R. ornithinolytica, representing the first report in Mexico.202134499216
85160.9988Looking for ESKAPE Bacteria: Occurrence and Phenotypic Antimicrobial Resistance Profiles in Wild Birds from Northern and Central Italy Sites. BACKGROUND/OBJECTIVES: Antimicrobial resistance is a critical global health challenge. Among resistant pathogens, the group of bacteria collectively referred to as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) is of particular concern due to their ability to evade multiple classes of antimicrobials. This study aimed to investigate the occurrence and resistance patterns of ESKAPE bacteria in wild birds from Northern and Central Italy sites, and to assess the presence of other bacteria of public health relevance. METHODS: Cloacal swabs were collected from 141 wild birds. Samples were processed on selective and differential media, and bacterial identification was performed using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility was evaluated through Minimum Inhibitory Concentration assays and interpreted according to international guidelines. RESULTS: Thirty-seven isolates belonging to the ESKAPE group were identified: E. faecium (n = 10), K. pneumoniae (n = 9), P. aeruginosa (n = 8), Enterobacter spp. (n = 7), S. aureus (n = 2), and A. baumannii (n = 1). Multidrug-resistant isolates were observed among K. pneumoniae and Enterobacter hormaechei. Escherichia coli, although not included in the ESKAPE group, was frequently detected and often co-isolated with clinically relevant bacteria, highlighting its potential role as a reservoir of resistance genes. CONCLUSIONS: Wild birds can harbor resistant bacteria of clinical importance, including multidrug-resistant ESKAPE species. Their presence in avian populations underscores the role of wildlife in the environmental dissemination of antimicrobial resistance, with implications for both animal and human health.202541148717
170470.9988Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria.202540415138
236480.9988Association of multilocus sequencing types and antimicrobial resistance profiles of methicillin-resistant Mammaliicoccus sciuri in animals in Southern Thailand. BACKGROUND AND AIM: Mammaliicoccus sciuri, formerly known as Staphylococcus sciuri, is an opportunistic pathogen in the environment, human and animal mucosa, and skin. Although this pathogen is becoming more resistant to drugs and harmful to animals and humans, basic knowledge of this pathogen remains limited. This study aimed to investigate a new multilocus sequencing type (MLST) related to the antibiotic resistance pattern of M. sciuri from animals in southern Thailand. MATERIALS AND METHODS: We used 11 methicillin-resistant M. sciuri (MRMS) isolates in this study which were obtained from six horses, four cows, and one chicken of the previous study. Antimicrobial resistance (AMR) was re-evaluated based on the minimum inhibitory concentration using the VITEK(®) 2 automated system. Three AMR genes were examined, namely mecA, mecC, and blaZ. Staphylococcal chromosomal cassette mec (SCCmec) gene detection was performed through the multiplex polymerase chain reaction (PCR). Internal segments of the seven housekeeping genes, ack, aroE, ftsZ, glpK, gmk, pta1, and tpiA, were used for multilocus sequence typing. The population of resistant bacteria and the types of multidrug-resistant, extensively drug-resistant, and pandemic drug-resistant bacteria were classified through descriptive analysis. RESULTS: mecA and blaZ genes were detected in all isolates; however, the mecC gene was not observed in any isolate based on the PCR results. All MRMS isolates revealed a non-typable SCCmec. Seven MLSTs (71, 81, 120, 121, 122, 199, and 200) were identified in this study. CONCLUSION: The characteristics of MRMS in Southern Thailand were variable, particularly in cattle and horses. The antibiogram and SCCmec types of this pathogen remain concerns with regard to antibiotic-resistant gene transmission among Staphylococcus and Mammaliicoccus species. All MLSTs in Thailand revealed the distribution among clones in Asia, including the virulence of a zoonotic clone in Southern Thailand.202337041994
539790.9988Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.202336746921
2402100.9988Antimicrobial Resistance and Virulence Genes in Staphylococci Isolated from Aviary Capercaillies and Free-living Birds in South-eastern Poland. INTRODUCTION: The current study characterises Staphylococcus bacteria recovered from dead free-living birds and captive capercaillies kept in south-eastern Poland. The results provide novel information about the antimicrobial resistance phenotype/genotype and the virulence profile of these bacteria. MATERIAL AND METHODS: Samples of internal organs were taken from dead birds. Staphylococcus strains were identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry. Susceptibility to 13 antibiotics was tested using a standard disc diffusion method on Mueller-Hinton agar. All isolates were screened for the presence of antibiotic resistance genes and staphylococcal enterotoxins (A to E), toxic shock syndrome toxin 1, exfoliative toxins A and B and Panton-Valentine leukocidin. RESULTS: A total of 129 bacterial strains belonging to 19 species of the Staphylococcus genus were isolated. A relatively high percentage of them resisted fluoroquinolones, tetracyclines, macrolides and β-lactams to a significant degree and harboured the tetK, tetM, ermC, mphC and mecA genes. Strains of the coagulase-negative S. sciuri, S. xylosus and S. cohnii were isolated with genes encoding enterotoxin A and toxic shock syndrome toxin. CONCLUSION: Both coagulase-positive and coagulase-negative staphylococci isolated from aviary capercaillies and free-living birds have significant pathogenic potential, and greater attention must be paid to the coagulase-negative species, which are still often considered mere contaminants. Virulence factors associated with resistance to antimicrobials, this being multiple in some strains, seem most important because they can be easily transferred between animals, especially those living in a given area.202236349137
1698110.9988Molecular typing of bacterial vaginosis isolates by using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR. OBJECTIVES: Bacterial vaginitis is one of the common conditions in the reproductive age of women characterized by inflammation in the vaginal mucosa. Among the various etiological agents that influence vaginitis, one of the most common etiological agents is bacteria that belongs to Enterobacteriaceae family members, including Escherichia coli and Klebsiella pneumoniae, which have been found as the primary common pathogen of aerobic vaginitis. This study aims to determine the genetic relatedness of the Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) technique isolated from pregnant and nonpregnant patients diagnosed with bacterial vaginosis. MATERIALS AND METHODS: The patient's vaginal swabs were collected using a sterile vaginal swab and screened for Gram-negative bacteria, and then the genus of those bacteria was identified using gold-standard microbiology techniques such as culturomics. The disc diffusion method was used to determine the antibiotic susceptibility of the bacteria to extended-spectrum beta-lactamase (ESBL). The organism's susceptibility was tested against eleven antimicrobial agents. A single-plex PCR was carried out for the following genes: Temoneira (TEM), Sulfhydryl reagent variable (SHV), and Cefotaxime-hydrolyzing β-lactamase (CTXM). After identifying ESBL resistance using the endpoint PCR, the genetic relatedness between each strain was determined using ERIC-PCR. Then, the gel was analyzed using the Gel-J software to create the phylogenetic tree dendrogram to find the genetic variations. RESULTS: Antibiotic susceptibility testing and molecular detection of antibiotic resistance genes demonstrated that antibiotic resistance is more prevalent in E. coli and K. pneumonia, which was shown to be the primary causative agent involved in bacterial vaginosis towards fluoroquinolone resistance. Over fifty percent of the isolates exhibited a multidrug resistance trait. CONCLUSION: This study's findings demonstrate an increase in multi-resistant strains of K. pneumoniae and E. coli prevalent in pregnant and nonpregnant women after examination. The results of the ERIC PCR analysis showed a significant genetic diversity between the strains of K. pneumoniae and E. coli, indicating the polyclonal distribution of these isolates in both pregnant and nonpregnant women presented with vaginal infections.202540216098
1647120.9988Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. BACKGROUND: Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS: Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS: Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The bla(CTX-M-15) gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION: Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria.202031279801
5615130.9988Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance.202439200000
1691140.9987The increasing threat of silver-resistance in clinical isolates from wounds and burns. PURPOSE: The widespread use of silver-containing compounds has led to emergence of silver-resistant bacteria. Few studies are available on the detectability of plasmid-mediated silver-resistance in developing countries. Therefore, we aimed to detect silver-resistance in isolates from wounds and burns, and to genetically characterize plasmid-mediated silver-resistance genes (sil genes). METHODS: One hundred and fifty clinical isolates were obtained from burns and wounds. They were identified using the suitable Analytical Profile Index and MicroScan identification systems. Their antimicrobial susceptibility was tested by the disk diffusion and broth microdilution methods. Their silver nitrate (AgNO(3)) minimum inhibitory concentration (MIC) was determined using the broth macrodilution method. The presence of different sil genes on plasmids extracted from silver-resistant isolates and the replicon types of the extracted plasmids were investigated using polymerase chain reaction (PCR). The ability of these plasmids to impart silver-resistance was tested by transformation. RESULTS: All except two isolates were multidrug-resistant. Nineteen silver-resistant bacterial isolates (12.6%) were detected; with AgNO(3) MIC ≥512 µg/mL. They were identified as Klebsiella pneumoniae (n=7), Staphylococcus aureus (n=4), Escherichia coli (n=2), Enterobacter cloacae (n=2), Pseudomonas aeruginosa (n=2) and Acinetobacter baumannii (n=2). PCR revealed the presence of different sil genes on the extracted plasmids. Plasmid transformation resulted in the transfer of silver-resistance to the resulting transformants. The extracted plasmids had different replicon types. CONCLUSION: Plasmid-mediated silver-resistance was detected for the first time, in clinical P. aeruginosa, A. baumannii and S. aureus isolates; in addition to its detection in K. pneumoniae, E. coli and Enterobacter cloacae. Therefore, strict monitoring on the use of silver compounds in medical settings is required; with implementation of an approved standardized method for silver-resistance detection.201931372006
2471150.9987New sequence type of an Enterobacter cloacae complex strain with the potential to become a high-risk clone. OBJECTIVES: Enterobacter cloacae complex (ECC) has awakened interest recently because of its increasing resistance to carbapenems codified by several genes all over the globe. Even though there are some sequence types (STs) which represent high-risk clones, there is substantial clonal diversity in the ECC. This work aimed to perform whole-genome sequencing (WGS), genomic analysis, and phylogenetic studies of a Klebsiella pneumoniae carbapenemase (KPC) -producing multidrug-resistant (MDR) ECC isolate from Argentina. METHODS: We analysed the genome of an MDR KPC-producing ECC strain isolated from a urine sample from a patient in a hospital in Argentina. The WGS was done by Illumina MiSeq-I (Illumina, San Diego, CA). The genome was assembled with SPAdes 3.9.0, and annotated with PROKKA, RAST, and Blast. Plasmids were identified with PlasmidFinder. Antibiotic resistance genes were detected using RESfinder, CARD, and Blastn. STs were identified with pubMLST. RESULTS: The strain was identified as Enterobacter hormaechei, an important emerging human pathogen. No ST could be assigned; six of seven alleles of multilocus sequence typing (MLST) were the same as for E. hormaechei ST66, which is a high-risk clone. We found multiple acquired antibiotic resistance genes, including bla(KPC-2) in an IncM1 plasmid, and a secretion system VI, which can favour the prevalence of ECC strains while competing with other bacteria. CONCLUSION: Because of its MLST profile being so close to that of E. hormaechei ST66, the acquisition of multiple resistance genes, and the presence of the secretion systems, the potential of this strain for becoming a new high-risk clone cannot be discarded.202236049730
2335160.9987Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.202336977209
2040170.9987Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla (TEM) in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla (CTX-M) group 1 (n=1), bla (CTX-M) group 9 (n=2), bla (TEM) (n=2), bla (SHV) (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community.202133997613
1621180.9987Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment.202134451523
2350190.9987Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. OBJECTIVE: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. METHODS: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. RESULTS: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. CONCLUSION: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment.202438933775