# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2092 | 0 | 1.0000 | Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene. Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. | 2008 | 24031236 |
| 2282 | 1 | 0.9991 | Cross resistance of quinolone derivatives in gram-negative bacteria. A total of 127 Gram-negative bacteria resistant to nalidixic acid were isolated from as many patients affected by urinary tract infections and hospitalized in the first Clinic of Infectious Diseases, University of Naples. Enterobacteria were identified by Enterotube system (Roche) and API 20 system (Ayerst). Non-fermentative bacteria were identified by OXI/FERM system (Roche). The following bacteria were collected: Escherichia coli 50, Proteus spp. 35, Enterobacter agglomerans 12, Serratia sp. 5, Pseudomonas aeruginosa 25. The in vitro antibacterial activity of nalidixic acid and three other quinoline derivatives (pipemidic acid, oxolinic acid and ciprofloxacin) were studied by determining the MICs by a miniaturized dilution broth method. The MICs were compared to evaluate the eventual cross resistance to the drugs under examination within each bacterial species. The results showed that 23% of bacteria were resistant to nalidixic acid, pipemidic acid and oxolinic acid; 49.6% to nalidixic and pipemidic acid and 0.7% to nalidixic acid and oxolinic acid. On the other hand none of the bacteria were resistant to ciprofloxacin. The last showed very low MICs against all the bacteria under examination, including Pseudomonas and Serratia. The high antibacterial activity of ciprofloxacin even against bacteria highly resistant to the other quinolines could be due to a greater affinity of the target sites or to the better permeability of resistant strains to the newer drug or because it is unaffected until now by mutations of genes responsible for cross resistance. | 1985 | 3159488 |
| 3632 | 2 | 0.9991 | Multiple antibiotic resistance among gram negative bacteria isolated from poultry. Gram negative bacteria, including species of Salmonella, Escherichia, Pseudomonas and Klebsiella, isolated from poultry, were screened for their resistance to the commonly used antibiotics: ampicillin, chloramphenicol, gentamycin, kanamycin, neomycin, polymyxin B, streptomycin and tetracycline. Of the 500 bacteria screened, 351 were found to be resistant to one or more antibiotics at the level of 50 micrograms/ml. Various patterns of antibiotic resistance observed during these studies have been reported. | 1994 | 8070844 |
| 5854 | 3 | 0.9990 | Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria. | 2010 | 20368404 |
| 5885 | 4 | 0.9990 | Identification and characterization of a novel β-lactamase gene, bla(AMZ-1), from Achromobacter mucicolens. BACKGROUND: Achromobacter is a genus of gram-negative bacteria that can act as opportunistic pathogens. Recent studies have revealed that some species of Achromobacter show inherent resistance to β-lactams, but the resistance mechanisms of Achromobacter mucicolens have rarely been reported. METHOD: The bacterium was isolated using standard laboratory procedures. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs). Genome sequencing was performed using the PacBio RS II and Illumina HiSeq 2500 platforms, and the Comprehensive Antibiotic Resistance Database (CARD) was used to annotate the drug resistance genes. The localization of the novel β-lactamase AMZ-1 was determined, and its characteristics were determined via molecular cloning and enzyme kinetic analysis. The phylogenetic relationship and comparative genomic analysis of the resistance gene-related sequences were also analyzed. RESULT: Achromobacter mucicolens Y3, isolated from a goose on a farm in Wenzhou, showed resistance to multiple antibiotics, including penicillins and cephalosporins. Bla(AMZ-1) showed resistance to amoxicillin, penicillin G, ampicillin, cephalothin and cefoxitin, and the resistance activity could be inhibited by β-lactamase inhibitors. Enzyme kinetic analysis results showed that AMZ-1 has hydrolytic activity against a wide range of substrates, including cephalothin, amoxicillin, penicillin G, and cefoxitin but not ampicillin. The hydrolytic activity of AMZ-1 was greatly inhibited by avibactam but much more weakly inhibited by tazobactam. Mobile genetic elements could not be found around the bla(AMZ-1)-like genes, which are conserved on the chromosomes of bacteria of the genus Achromobacter. CONCLUSION: In this study, a novel AmpC gene, bla(AMZ-1), from the animal-origin bacterium A. mucicolens Y3 was identified and characterized. It conferred resistance to some penicillins and first- and second-generation cephalosporins. The identification of this novel resistance gene will be beneficial for the selection of effective antimicrobials to treat associated infections. | 2023 | 37808287 |
| 2443 | 5 | 0.9990 | Antibiotic Resistance among Fusobacterium, Capnocytophaga, and Leptotrichia Species of the Oral Cavity. PURPOSE: Antibiotics play an important role in treating periodontal diseases. Due to the effectiveness of antibiotic therapies, their usage in dentistry has significantly increased. The aim of this study focused on the in-vitro susceptibility of different gram-negative oral bacteria species - which are associated with periodontal diseases (Fusobacterium spp., Capnocytophaga spp. and Leptotrichia buccalis) and have different geographical origins (Asia and Europe) - against antimicrobials that are clinically relevant in dental therapy. MATERIALS AND METHODS: A total of 45 strains were tested (29 Fusobacterium spp., 13 Capnocytophaga spp. and 3 L. buccalis) that were either isolated from Chinese patients or were obtained from different strain collections. Their antimicrobial susceptibility to the antimicrobial agents benzylpenicillin, amoxicillin, amoxicillin-clavulanic acid, ciprofloxacin, moxifloxacin, clindamycin, doxycycline, tetracycline and metronidazole was tested using the E-Test. Strains with particular resistance to penicillin, clindamycin and metronidazole were further analysed for resistance genes. RESULTS: All tested bacterial isolates were sensitive to amoxicillin, amoxicillin-clavulanic acid, doxycycline and tetracycline, but showed variable sensitivity towards other antibiotics such as benzylpenicillin, ciprofloxacin, moxifloxacin, clindamycin and metronidazole. CONCLUSION: The results of the present study suggest that certain periodontal disease-related bacterial strains can be resistant towards antimicrobial agents commonly used in adjuvant periodontal therapy. | 2023 | 37014213 |
| 2061 | 6 | 0.9990 | Resistance carrying plasmid in a traumatic wound. OBJECTIVE: To isolate and identify antibiotic-resistant bacteria from the exudate of a complex wound and determine if antibiotic resistance genes are chromosomal or plasmid borne. METHOD: Antibiotic resistant bacteria from wound exudate of a single clinical sample were selected on agar media with ampicillin. A single colony was further screened for resistance to kanamycin by antibiotic-supplemented agar and to other antibiotics by an automated Phoenix instrument. Identification of the isolate was carried out by biochemical profiling and by 16S rDNA analysis. RESULTS: Approximately 51% of total bacteria in the wound exudate with identical colony morphotype were resistant to 100 microg/ml of ampicillin. A single colony from this population also demonstrated resistance to 50 microg/ml of kanamycin on kanamycin-supplemented agar. Further antimicrobial sensitivity testing by the Phoenix instrument indicated resistance to inhibitory concentrations of amoxicillin-clavulanate, ampicillin-sulbactam, cefazolin, gentamicin, nitrofurantoin, tobramycin, and trimethoprim-sulfamethoxazole. Biochemical and 16S rDNA analysis identified this bacterial isolate as a member of genus Enterobacter. A plasmid preparation from this isolate successfully transferred ampicillin and kanamycin resistance to E. coli competent cells. E. coli transformants displayed two resistance phenotypes and the plasmids from these transformants displayed two different restriction type patterns, with one correlating to ampicillin and kanamycin resistance and the other only to ampicillin resistance. CONCLUSION: A multiple antibiotic-resistant Enterobacter spp. from the wound fluid of a clinical sample was found to carry an antibiotic-resistant plasmid in a closely related species E. coli. The presence of antibiotic resistance plasmid in Enterobacteria that are part of the normal microbial flora of the human gut and skin could lead to the spread of resistance phenotype and emergence of antibiotic resistant pathogens. This study suggests normal human microbial fl ora could be a potential reservoir for resistance genes. | 2010 | 20616773 |
| 5906 | 7 | 0.9990 | Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. OBJECTIVE: To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probiotics. METHODS: Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. RESULTS: Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. CONCLUSION: Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations. | 2009 | 20163065 |
| 5397 | 8 | 0.9990 | Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use. | 2023 | 36746921 |
| 2441 | 9 | 0.9990 | Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Bacteria of the genus Staphylococcus were isolated from air sampled from living spaces in Kraków (Poland). In total, 55 strains belonging to the genus Staphylococcus were isolated from 45 sites, and 13 species of coagulase-negative staphylococci were identified. The species composition of studied airborne microbiota contains Staphylococcus species that are rarely infectious to humans. Most commonly isolated species comprised S. hominis and S. warneri. The disk-diffusion tests showed that the collected isolates were most frequently resistant to erythromycin. The PCR technique was employed to search for genes conferring the resistance in staphylococci to antibiotics from the group of macrolides, lincosamides and streptogramins. The analyzed Staphylococcus isolates possessed simultaneously 4 different resistance genes. The molecular analysis with the use of specific primers allowed to determine the most prevalent gene which is mphC, responsible for the resistance to macrolides and for the enzymatic inactivation of the drug by phosphotransferase. The second most often detected gene was msrA1, which confers the resistance of staphylococci to macrolides and is responsible for active pumping of antimicrobial particles out of bacterial cells. | 2017 | 28955110 |
| 5997 | 10 | 0.9990 | Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe. | 2008 | 18063151 |
| 5970 | 11 | 0.9989 | DNA microarray for detection of macrolide resistance genes. A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria. | 2006 | 16723563 |
| 5996 | 12 | 0.9989 | Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis. | 2008 | 17957105 |
| 2442 | 13 | 0.9989 | Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin. Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections. | 2014 | 24735183 |
| 5940 | 14 | 0.9989 | In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. OBJECTIVES: Prior to the renewal of spectinomycin licensing for veterinary uses in Germany, 154 Pasteurella multocida and 148 Mannheimia haemolytica strains from respiratory tract infections in cattle were investigated for their MICs of spectinomycin and other antimicrobial agents. The data obtained should serve as a baseline from which to judge the future development of resistance. Moreover, the in vitro activity of spectinomycin in comparison with other antimicrobials should be assessed. METHODS: MIC determination for all 302 strains was performed by the broth dilution method and evaluated according to NCCLS standards. MIC(50) and MIC(90) values were calculated. Strains resistant to spectinomycin were subjected to PCR assays for genes known to mediate spectinomycin resistance in Gram-negative and Gram-positive bacteria. RESULTS: With the exception of resistance to sulfamethoxazole in P. multocida and M. haemolytica, and resistance to ampicillin in M. haemolytica, an overall low level of resistance was detected. A total of 93.5% of the P. multocida and 98.6% of the M. haemolytica strains were susceptible to spectinomycin, with MIC(90)s of 32 mg/L. PCR analysis showed that none of the spectinomycin-resistant strains carried any of the aadA gene subtypes, nor the genes spc or aad(9). CONCLUSIONS: Prior to the renewal of spectinomycin, only a small number of spectinomycin-resistant strains was detected among bovine P. multocida and M. haemolytica. The genes responsible for spectinomycin resistance in these strains seemed to be different from those so far known to occur in other Gram-negative and Gram-positive bacteria. | 2004 | 14729757 |
| 5909 | 15 | 0.9989 | Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. Lactobacillus reuteri and Lactobacillus fermentum, which are commonly used as food processing aids and probiotics, can potentially act as reservoirs of antibiotic resistance genes. Acquired resistance genes may be transferred via the food chain or in the gastrointestinal tract to pathogenic bacteria. Knowledge of the distributions of antibiotic MICs for a species is needed when using a phenotypic method to assess the presence of acquired resistance genes. In the present study, 56 L. reuteri and 56 L. fermentum strains that differed by source and spatial and temporal origin were assessed for antibiotic susceptibility using an Etest kit and a broth microdilution protocol. L. fermentum strains displayed a uniform distribution of MICs for all six antibiotics tested. L. reuteri strains had a bimodal distribution of MICs or a distribution with MICs above the test range for 7 of the 14 antibiotics tested. Genetic relatedness was observed among L. reuteri strains with high MICs for both ampicillin and tetracycline and among strains with high MICs for both erythromycin and clindamycin. Results obtained with the Etest and the broth microdilution method corresponded well with each other. Thus, further research may make it possible to define microbiological breakpoints for distinguishing between strains with and without acquired resistance genes. | 2007 | 17340877 |
| 2060 | 16 | 0.9989 | Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. The sale of small turtles is banned by the Food and Drug Administration from the U.S. market due to concerns about their excretion of Salmonella spp. To produce a safe pet for the export market, the Louisiana pet turtle industry uses gentamicin sulfate baths (1,000 microg/ml) to eradicate Salmonella spp. from turtle eggs. In 1999, we analyzed bacterial samples recovered from turtle farms and found that strains of Salmonella enterica subsp. arizonae and other bacteria, such as Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were resistant to high concentrations of gentamicin (>2,000 microg/ml) and to other aminoglycosides. The goal of this study was to identify the gene(s) which contributes to the high-level gentamicin resistance phenotype observed in bacteria from environmental samples with turtle farming activity, particularly the salmonellae, and to estimate the incidence of such genes in these bacteria. R plasmids from gentamicin-resistant strains were transferred by conjugation and transformation to naive Escherichia coli cells. Cloning and sequencing of the gentamicin resistance determinants on these plasmids revealed the presence of the aminoglycoside acetyltransferase genes aac(3)-IIa and aac(3)-VIa; the latter was present as a gene cassette of a class 1 integron. Multiplex PCR assays showed that every gentamicin-resistant isolate carried one of these acetyltransferase genes. Pulsed-field gel electrophoresis and restriction enzyme digestion analysis of R plasmids carrying these genes revealed different restriction profiles and sizes, indicating a dissemination of the gentamicin resistance genes through mobile molecular elements. The data presented highlight the need to develop an alternate method for the eradication of Salmonella spp. from turtle eggs. | 2006 | 16391058 |
| 5532 | 17 | 0.9989 | Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. In this study, we screened eight commercially available brands of Lactobacillus-containing probiotic preparations and dietary supplements for resistance towards commonly administered antibiotics of different classes. According to disc diffusion results, most of the isolates were resistant to vancomycin and susceptible to penicillin-type antibiotics (ampicillin and amoxicillin), carbapenems (imipenem, meropenem, and ertapenem), and inhibitors of protein synthesis (chloramphenicol, erythromycin, tetracycline, clarithromycin, and linezolid). However, based on minimum inhibitory concentration (MIC) values, six strains were reconsidered as resistant to tetracycline. All tested lactobacilli were resistant towards amikacin, ciprofloxacin, and norfloxacin. Resistance to cephalosporins was highly variable and decreased in the following order: ceftazidime/cefepime, ceftriaxone, cefotaxime, cefazolin, and cefoperazone. PCR screening for antibiotic resistance determinants in probiotic lactobacilli revealed a wide occurrence of vancomycin resistance gene vanX, ciprofloxacin resistance gene parC, and extended-spectrum β-lactamase gene blaTEM. We also detected the tetK gene for tetracycline resistance in one isolate. Additionally, we identified discrepancies between the claims of the manufacturers and the identified species composition, as well as the enumerated amount of viable bacteria, for several products. The results of this study raise concerns about the safety of lactobacilli for human consumption as probiotics, as they may act as reservoirs of transferable antibiotic resistance genes. | 2022 | 36358212 |
| 5537 | 18 | 0.9989 | Four novel Acinetobacter lwoffii strains isolated from the milk of cows in China with subclinical mastitis. BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii. | 2024 | 38918815 |
| 6051 | 19 | 0.9989 | Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes. | 2011 | 22146692 |