Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
208401.0000Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland. Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (bla(WDC-1)), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic bla(CTX-M-55) extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.201729067005
206510.9996Exogenous plasmid capture to characterize tetracycline-resistance plasmids in sprouts obtained from retail in Germany. This study aimed to characterize antibiotic-resistance plasmids present in microorganisms from sprout samples using exogenous plasmid capture. Fresh mung bean sprouts were predominantly colonized by bacteria from the phyla Proteobacteria and Bacteroidetes. To capture plasmids, a plasmid-free Escherichia (E.) coli CV601 strain, containing a green fluorescent protein gene for selection, was used as the recipient strain in exogenous plasmid capture experiments. Transconjugants were selected on media containing cefotaxime or tetracycline antibiotics. While no cefotaxime-resistant transconjugants were obtained, 40 tetracycline-resistant isolates were obtained and sequenced by Illumina NextSeq short read and Nanopore MinION long read sequencing. Sequences were assembled using Unicycler hybrid assembly. Most of the captured long plasmids carried either the tet(A) or tet(D) resistance gene, belonged to the IncFI or IncFII replicon types, and were predicted as conjugative. While the smaller plasmids contained the tet(A) tetracycline resistance gene as well as additional quinolone (qnrS1), sulfonamide (sul1) and trimethoprim (dfrA1) resistance genes, the larger plasmids only contained the tet(D) resistance gene. An exception was the largest 192 kbp plasmid isolated, which contained the tet(D), as well as sulfonamide (sul1) and streptomycin (aadA1) resistance genes. The smaller plasmid was isolated from different sprout samples more often and showed a 100% identity in size (71,155 bp), while the 180 kbp plasmids showed some smaller or larger differences (in size between 157,683 to 192,360 bp). This suggested that the plasmids obtained from the similar sprout production batches could be clonally related. Nanopore MinION based 16S metagenomics showed the presence of Enterobacter (En.) cloacae, En. ludwigii, En. kobei, Citrobacter (C.) werkmanii, C. freundii, Klebsiella (K.) oxytoca and K. pneumonia, which have previously been isolated from fresh produce in Germany. These bacteria may harbor antibiotic resistance genes on plasmids that could potentially be transferred to similar genera. This study demonstrated that bacteria present in sprouts may act as the donors of antibiotic resistance plasmids which can transfer resistance to other bacteria on this product via conjugation.202540012786
207020.9996Complex integrons containing qnrB4-ampC (bla(DHA-1)) in plasmids of multidrug-resistant Citrobacter freundii from wastewater. Microbial populations in wastewater treatment plants (WWTPs) are increasingly being recognized as environmental reservoirs of antibiotic resistance genes. PCR amplicons for plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS were recorded in samples from a WWTP in Vancouver, British Columbia. Six strains of ciprofloxacin-resistant Citrobacter freundii were isolated and found to carry mutations in gyrA and parC, as well as multiple plasmid-borne resistance genes, collectively including qnrB; aac(6')-Ib-cr; β-lactamase-encoding genes from molecular classes A (blaTEM-1), C (ampC), D (blaOXA-1, blaOXA-10); and genes for resistance to 5 other types of antibiotics. In 3 strains, large (>60 kb) plasmids carried qnrB4 and ampC as part of a complex integron in a 14 kb arrangement that has been reported worldwide but, until recently, only among pathogenic strains of Klebsiella. Analysis of single-nucleotide polymorphisms in the qnrB4-ampC regions infers 2 introductions into the WWTP environment. These results suggest recent passage of plasmid-borne fluoroquinolone and β-lactam resistance genes from pathogens to bacteria that may be indigenous inhabitants of WWTPs, thus contributing to an environmental pool of antibiotic resistance.201323461518
198730.9995Plasmid sequence dataset of multidrug-resistant Enterobacterales isolated from hospital effluents and wastewater treatment plant. We present plasmid sequences of 21 multidrug resistant isolates of Enterobacterales belonging to Escherichia coli (n=10), Klebsiella pneumoniae (n=9), Klebsiella oxytoca (n=1), and Citrobacter freundii (n=1). The isolates originated from effluent collected from hospital sewer pipes and from a wastewater treatment plant (WWTP) in a southwestern Hungarian city. Isolation was carried out using eosin methylene blue agar supplemented with ceftriaxone and the isolates were identified with MALDI-TOF MS. Screening for multidrug resistance was conducted by determining susceptibility to four chemical classes namely, beta-lactams, aminoglycoside, fluoroquinolone, and sulfonamide. Plasmid DNA was isolated by alkaline lysis method using the Monarch plasmid DNA miniprep kit from freshly grown pure colonies. Molecular typing and Illumina sequencing of plasmid DNA of multiresistant strains were performed. After the assembly of contigs, genes localized on plasmid sequences were determined and functionally annotated. These reconstructed plasmid sequences supplemented with gene functional annotations were deposited in the Mendeley data. Using these datasets different plasmid incompatibility groups were identified. These conjugative plasmids appear to play a key role in the transmission of multiple resistance genes in enteric bacteria via wastewater. The presented data may provide useful insight on the correlations between environmental antibiotic contamination and the development of bacterial resistance, which poses a serious public health threat.202236426060
197840.9995Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384
207150.9995Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase. Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems.201627012919
206960.9995Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. BACKGROUND: Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal bla AmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. FINDINGS: Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of bla CMY-46 and bla CMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-bla CMY-2-type -ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. CONCLUSIONS: This study describes two new bla CMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level.201525885413
206770.9995Genetic characterization of three qnrS1-harbouring multidrug-resistance plasmids and qnrS1-containing transposons circulating in Ho Chi Minh City, Vietnam. Plasmid-mediated quinolone resistance (PMQR) refers to a family of closely related genes that confer decreased susceptibility to fluoroquinolones. PMQR genes are generally associated with integrons and/or plasmids that carry additional antimicrobial resistance genes active against a range of antimicrobials. In Ho Chi Minh City (HCMC), Vietnam, we have previously shown a high frequency of PMQR genes within commensal Enterobacteriaceae. However, there are limited available sequence data detailing the genetic context in which the PMQR genes reside, and a lack of understanding of how these genes spread across the Enterobacteriaceae. Here, we aimed to determine the genetic background facilitating the spread and maintenance of qnrS1, the dominant PMQR gene circulating in HCMC. We sequenced three qnrS1-carrying plasmids in their entirety to understand the genetic context of these qnrS1-embedded plasmids and also the association of qnrS1-mediated quinolone resistance with other antimicrobial resistance phenotypes. Annotation of the three qnrS1-containing plasmids revealed a qnrS1-containing transposon with a closely related structure. We screened 112 qnrS1-positive commensal Enterobacteriaceae isolated in the community and in a hospital in HCMC to detect the common transposon structure. We found the same transposon structure to be present in 71.4 % (45/63) of qnrS1-positive hospital isolates and in 36.7 % (18/49) of qnrS1-positive isolates from the community. The resulting sequence analysis of the qnrS1 environment suggested that qnrS1 genes are widely distributed and are mobilized on elements with a common genetic background. Our data add additional insight into mechanisms that facilitate resistance to multiple antimicrobials in Gram-negative bacteria in Vietnam.201526272054
206880.9995Genetic characterization of plasmid-mediated fluoroquinolone efflux pump QepA among ESBL-producing Escherichia coli isolates in Mexico. Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside bla(CTX-M-15) genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems.202337702924
197990.9995Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. coli in the United States. Fluoroquinolones are used to treat serious bacterial infections, including those caused by Escherichia coli and Salmonella enterica. The emergence of plasmid-mediated quinolone resistance (PMQR) represent a new challenge to the successful treatment of Gram-negative infections. As part of a long-term strategy to generate a reference database of closed plasmids from antimicrobial resistant foodborne bacteria, we performed long-read sequencing of 11 E. coli isolates from retail meats that were non-susceptible to ciprofloxacin. Each of the isolates had PMQR genes, including qnrA1, qnrS1, and qnrB19. The four qnrB19 genes were carried on two distinct ColE-type plasmids among isolates from pork chop and ground turkey and were identical to plasmids previously identified in Salmonella. Seven other plasmids differed from any other sequences in GenBank and comprised IncF and IncR plasmids that ranged in size from 48 to 180 kb. These plasmids also contained different combinations of resistance genes, including those conferring resistance to beta-lactams, macrolides, sulfonamides, tetracycline, and heavy metals. Although relatively few isolates have PMQR genes, the identification of diverse plasmids in multiple retail meat sources suggests the potential for further spread of fluoroquinolone resistance, including through co-selection. These results highlight the value of long-read sequencing in characterizing antimicrobial resistance genes of public health concern.201931866986
2636100.9995Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Antimicrobial resistance is a "One Health" issue that requires improved knowledge of the presence and abundance of resistant bacteria in the environment. Extended-spectrum cephalosporins (ESCs) are critically important antibiotics (CIAs), and resistance to these CIAs is often encoded by beta-lactamase genes borne on conjugative plasmids. We thus decided to characterise 21 plasmids of ESC-resistant Escherichia coli randomly selected from isolates previously obtained from river water collected in a rural area in western France. The plasmids encoding ESC resistance were sequenced to investigate the diversity of the genes encoding ESC resistance and their genetic context. Sequences revealed that eleven IncI1 pMLST3 plasmids carried the bla(CTX-M-1) and sul2 genes, and some of them also had the tet(A), aadA5 or dfrA17 genes. The bla(CTX-M-1) gene was also detected on an IncN plasmid. Five plasmids obtained from four rivers contained bla(CTX-M-14), either on IncI1 or on IncFII plasmids. Two strains from two rivers contained bla(CTX-M-15) on IncN pMLST7 plasmids, with qnrS1 and dfrA14 genes. One plasmid contained the bla(CTX-M-55), a bla(TEM-1B)-like, and fosA genes. One plasmid contained the bla(CMY-2) gene. The diversity of the genes and plasmids of the resistant bacteria isolated from French rivers is probably related to the various animal and human origins of the isolated bacteria.202032273005
1898110.9995Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Multiple-replicon resistance plasmids have become important carriers of resistance genes in Gram-negative bacteria, and the evolution of multiple-replicon plasmids is still not clear. Here, 56 isolates of Klebsiella isolated from different wild animals and environments between 2018 and 2020 were identified by phenotyping via the micro-broth dilution method and were sequenced and analyzed for bacterial genome-wide association study. Our results revealed that the isolates from non-human sources showed more extensive drug resistance and especially strong resistance to ampicillin (up to 80.36%). The isolates from Malayan pangolin were particularly highly resistant to cephalosporins, chloramphenicol, levofloxacin, and sulfamethoxazole. Genomic analysis showed that the resistance plasmids in these isolates carried many antibiotic resistance genes. Further analysis of 69 plasmids demonstrated that 28 plasmids were multiple-replicon plasmids, mainly carrying beta-lactamase genes such as bla (CTX-M-) (15), bla (CTX-M-) (14), bla (CTX-M-) (55), bla (OXA-) (1), and bla (TEM-) (1). The analysis of plasmids carried by different isolates showed that Klebsiella pneumoniae might be an important multiple-replicon plasmid host. Plasmid skeleton and structure analyses showed that a multiple-replicon plasmid was formed by the fusion of two or more single plasmids, conferring strong adaptability to the antibiotic environment and continuously increasing the ability of drug-resistant isolates to spread around the world. In conclusion, multiple-replicon plasmids are better able to carry resistance genes than non-multiple-replicon plasmids, which may be an important mechanism underlying bacterial responses to environments with high-antibiotic pressure. This phenomenon will be highly significant for exploring bacterial resistance gene transmission and diffusion mechanisms in the future.202134777312
1902120.9995Large-scale analysis of putative plasmids in clinical multidrug-resistant Escherichia coli isolates from Vietnamese patients. INTRODUCTION: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. METHODS: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. RESULTS: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the bla(KPC-2), bla(NDM-5), bla(OXA-1), bla(OXA-48), and bla(OXA-181) β-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the β-lactamase gene clusters in plasmid contigs that carried the same AMR genes. DISCUSSION: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.202337323902
1980130.9995Genotypic analyses of IncHI2 plasmids from enteric bacteria. Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.202438684834
1899140.9995Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. BACKGROUND: Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS: In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE: This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.201222808141
2086150.9995Comparative genomic analyses of β-lactamase (bla(CMY-42))-encoding plasmids isolated from wastewater treatment plants in Canada. Wastewater treatment plants (WWTPs) are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes (ARGs). Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening for antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOB(F12) plasmid, pFEMG (209 357 bp), harbouring resistance genes to β-lactam (bla(CMY-42), bla(TEM-1β), and bla(NDM-5)), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOB(P12) plasmid pPIMR (172 280 bp) carrying similar β-lactamase and a small multi-drug efflux resistance gene cluster (bla(CMY-42)-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24 552 bp cluster in pFEMG - interspersed with transposons, insertion sequence elements, and a class 1 integron - may be of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponded to observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade-offs of plasmids with different types of conjugative transfer and maintenance modules.202134077692
1988160.9995Different fosA genes were found on mobile genetic elements in Escherichia coli from wastewaters of hospitals and municipals in Turkey. AIMS: The increasing number of globally established fosfomycin-resistant (Fos(R)) Gram-negative bacteria inspired us to investigate the occurrence of Fos(R)Enterobacterales populations (esp. E. coli) in samples of city wastewater treatment plants (WWTPs) and hospital sewage in Hatay, Turkey. Fos(R) target bacteria were further characterized for their clonal relatedness, resistomes and mobile genetic elements (MGEs) to evaluate their impact on fosfomycin resistance dissemination. METHODS: A total of 44 samples from raw and treated waters of WWTPs as well as of two hospitals in the Hatay province were subjected to selective cultivation for recovering Fos(R)Enterobacterales. The presence of fosA was verified by PCR and Sanger amplicon sequencing. Detected E. coli were further evaluated against antimicrobial susceptibility-testing, macrorestriction profiling (PFGE) and whole-genome sequencing (WGS). Bioinformatics analysis was performed for genome subtyping (i.e., MLST, serotype), resistome/virulome determination and dissection of the genetic determinants of plasmidic fosA3/4 resistances. RESULTS: Besides ten non-E. coli Enterobacterales, 29 E. coli were collected within this study. In silico-based subtyping revealed that E. coli isolates were assigned to six different serovars and 14 sequence types (ST), while O8:H21 and ST410 represented the major prevalent types, respectively. Fosfomycin resistance in the isolates was found to be mediated by the fosA4 (n = 18), fosA3 (n = 10) and fosA (n = 1), which are frequently associated with transmissible MGEs. Reconstruction of plasmid-associated fosA gene context revealed a linkage between the resistance cassette and IS6 (IS26 family) transposases, which might represent a major driver for the distribution of the genes and the generation of novel fosA-carrying plasmids. CONCLUSIONS: The occurrence of plasmid-mediated, transmissible Fos(R) in E. coli from wastewater pose a foreseeable threat to "One-Health". To minimize further spread of the resistances in bacterial populations associated with environmental, animal and human health further resistance monitoring and management strategies must be developed.202235182630
1901170.9994Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that bla(CTX-M) is the dominant ESBL gene type found in South Korea. The spread of bla(CTX-M) appears to have been facilitated by both clonal spread between different host species and conjugation. Most bla(CTX-M) genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of bla(CTX-M)-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.202438554973
2730180.9994Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.201626469134
2627190.9994High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.202133633708