Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
207301.0000Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile. Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6')-Ib-cr, was identical to aac(6')-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6')-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12.201424760167
207510.9998Identification and Genetic Characterization of Conjugative Plasmids Encoding Coresistance to Ciprofloxacin and Cephalosporin in Foodborne Vibrio spp. Plasmid-mediated quinolone resistance (PMQR) determinants, such as qnrVC genes, have been widely reported in Vibrio spp. while other types of PMQR genes were rarely reported in these bacteria. This study characterized the phenotypic and genotypic features of foodborne Vibrio spp. carrying qnrS, a key PMQR gene in Enterobacteriaceae. Among a total of 1,811 foodborne Vibrio isolates tested, 34 (1.88%) were found to harbor the qnrS gene. The allele qnrS2 was the most prevalent, but coexistence with other qnr alleles was common. Missense mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes were only found in 11 of the 34 qnrS-bearing isolates. Antimicrobial susceptibility tests showed that all 34 qnrS-bearing isolates were resistant to ampicillin and that a high percentage also exhibited resistance to cefotaxime, ceftriaxone, and trimethoprim-sulfamethoxazole. Genetic analysis showed that these phenotypes were attributed to a diverse range of resistance elements that the qnrS-bearing isolates harbored. The qnrS2 gene could be found in both the chromosome and plasmids; the plasmid-borne qnrS2 genes could be found on both conjugative and nonconjugative plasmids. pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of phenotypic resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would speed up the emergence of multidrug-resistant (MDR) pathogens that are resistant to the most important antibiotics used in treatment of Vibrio infections, suggesting that close monitoring of emergence and dissemination of MDR Vibrio spp. in both food samples and clinical settings is necessary. IMPORTANCE Vibrio spp. used to be very susceptible to antibiotics. However, resistance to clinically important antibiotics, such as cephalosporins and fluoroquinolones, among clinically isolated Vibrio strains is increasingly common. In this study, we found that plasmid-mediated quinolone resistance (PMQR) genes, such as qnrS, that have not been previously reported in Vibrio spp. can now be detected in food isolates. The qnrS2 gene alone could mediate expression of ciprofloxacin resistance in Vibrio spp.; importantly, this gene could be found in both the chromosome and plasmids. The plasmids that harbor the qnrS2 gene could be both conjugative and nonconjugative, among which the pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would accelerate the emergence of multidrug-resistant pathogens.202337395663
205820.9998Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Fluoroquinolones (FQs) have been detected in aquatic environments in several countries. Long-term exposure to low levels of antimicrobial agents provides selective pressure, which might alter the sensitivity of bacteria to antimicrobial agents in the environment. Here, we examined FQ levels and the resistance of Escherichia coli (E. coli) to FQs by phenotyping and genotyping. In the aquatic environment in Osaka, Japan, ciprofloxacin, enoxacin, enfloxacin, lomefloxacin, norfloxacin, and ofloxacin were detected in concentrations ranging from 0.1 to 570 ng L(-1). FQ-resistant E. coli were also found. Although no obvious correlation was detected between the concentration of FQs and the presence of FQ-resistant E. coli, FQ-resistant E. coli were detected in samples along with FQs, particularly ciprofloxacin and ofloxacin. Most FQ-resistant E. coli carried mutations in gyrA, parC, and parE in quinolone resistance-determining regions. No mutations in gyrB were detected in any isolates. Amino acid changes in these isolates were quite similar to those in clinical isolates. Six strains carried the plasmid-mediated quinolone resistance determinant qnrS1 and expressed low susceptibility to ciprofloxacin and nalidixic acid: the minimum inhibitory concentrations ranged from 0.25 μg mL(-1) for ciprofloxacin, and from 8 to 16 μg mL(-1) for nalidixic acid. This finding confirmed that plasmids containing qnr genes themselves did not confer full resistance to quinolones. Because plasmids are responsible for much of the horizontal gene transfer, these genes may transfer and spread in the environment. To our knowledge, this is the first report of plasmid-mediated quinolone resistance determinant qnrS1 in the aquatic environment, and this investigation provides baseline data on antimicrobial resistance profiles in the Osaka area.201323291652
207430.9998Drug Resistance and Integron Genes in Escherichia coli Isolated from Urinary Tract Infection. Escherichia coli (E. coli) is a major cause of urinary tract infections. Treatment of these infections with antibiotics is often not effective due to the acquisition of drug-resistance genes by the bacteria. This process is mediated by integrons which belong to bacterial mobile genetic elements. Therefore, the present study addressed the issue of the relation between antibiotic resistance and integron genes in E. coli isolated from patients affected by urinary tract infection. Multiplex PCR assay employed to detect the E. coli integrase gene demonstrated that out of 49 bacterial strains, 26 were carrying class 1 integron and there was no case of bacteria harboring class 2 or class 3 integrons. Correlation analysis documented that E. coli strains harboring class 1 integron exhibited higher resistance towards tobramycin. The variable region gene cassette contained combinations of four genes responsible for antibiotic resistance: dfr17, aadA2, aadA5, and aac(6')-Ib-cr, of which the latter conferred tobramycin resistance. Together, the collected data underscore the need for identification and analysis of integrons in E. coli-induced urinary infections.201930961771
206040.9998Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. The sale of small turtles is banned by the Food and Drug Administration from the U.S. market due to concerns about their excretion of Salmonella spp. To produce a safe pet for the export market, the Louisiana pet turtle industry uses gentamicin sulfate baths (1,000 microg/ml) to eradicate Salmonella spp. from turtle eggs. In 1999, we analyzed bacterial samples recovered from turtle farms and found that strains of Salmonella enterica subsp. arizonae and other bacteria, such as Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were resistant to high concentrations of gentamicin (>2,000 microg/ml) and to other aminoglycosides. The goal of this study was to identify the gene(s) which contributes to the high-level gentamicin resistance phenotype observed in bacteria from environmental samples with turtle farming activity, particularly the salmonellae, and to estimate the incidence of such genes in these bacteria. R plasmids from gentamicin-resistant strains were transferred by conjugation and transformation to naive Escherichia coli cells. Cloning and sequencing of the gentamicin resistance determinants on these plasmids revealed the presence of the aminoglycoside acetyltransferase genes aac(3)-IIa and aac(3)-VIa; the latter was present as a gene cassette of a class 1 integron. Multiplex PCR assays showed that every gentamicin-resistant isolate carried one of these acetyltransferase genes. Pulsed-field gel electrophoresis and restriction enzyme digestion analysis of R plasmids carrying these genes revealed different restriction profiles and sizes, indicating a dissemination of the gentamicin resistance genes through mobile molecular elements. The data presented highlight the need to develop an alternate method for the eradication of Salmonella spp. from turtle eggs.200616391058
355950.9998Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.201828642992
592460.9998In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Transfer of resistance genes from bacteria from food producing animals to human pathogens is a potential risk to human health. The aim of this study was to determine in vivo transfer of a plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to Escherichia coli and the influence of the use of antimicrobials on this transfer. Thirty four-day-old SPF chickens colonized with E. coli K12 were divided into 3 groups of 10 animals each, and placed in separate isolators. Eleven days after inoculation with E. coli K12 the chickens were inoculated orally with 10(4)CFU of S. enterica spp. enterica serovar Typhimurium containing a plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Two days after the administration of S. Typhimurium 1 group was treated orally with doxycycline, 1 group orally with trimethoprim/sulphamethoxazole and 1 group remained untreated (control group). E. coli K12, S. Typhimurium and the transconjugants were isolated from cloacal samples on selective MacConkey agar plates. Transfer of the plasmid was confirmed by plasmid characterization, PCR, PFGE and hybridization. Plasmid mediated transfer of a class 1 integron was observed almost immediately after inoculation with S. Typhimurium. Treatment of the chickens with antibiotics had neither a positive nor a negative effect on the transfer rates. In addition to the resistance genes located on the integron, resistance genes encoding for tetracycline and amoxicillin resistance transferred from the donor strain as well. The resistance genes and the integron were located on a 130 kb sized IncFIB plasmid. Our data demonstrate in vivo transfer of an IncFIB plasmid harbouring a class 1 integron containing gene cassettes dfrA1-aadA1 from Salmonella to E. coli, with or without selective pressure of antibiotics in chickens.200919264430
206270.9998Expulsion of plasmid-mediated antibiotic resistance genes in E. coli by ethidium bromide and acridine orange treatment. Plasmid borne antibiotics resistance is the global threat to healthcare facilities. Such antibiotics resistance is inherited stably within the same bacterial generations and transmitted horizontally to other species of bacteria. The elimination of such resistance plasmid is of great importance to contain dispersal of antibiotics resistance. E. coli strains were identified, screened for the presence of antibiotics resistance by disc diffusion method, and cured by sub-lethal concentrations of Ethidium bromide and Acridine orange. After curing, again antibiotic resistance was determined. Before and after curing, plasmids were extracted by column spin Kit and subjected to 1% agarose gel electrophoresis and antibiotic resistance genes were identified by PCR. The Ethidium bromide was more effective than Acridine orange in eliminating antibiotics resistance and resistance genes bearing plasmids (4, 5, 6, 8, 9, 10 and <10kb). The most frequently eliminated antibiotic resistance was against Imipenem and Meropenem followed by Cefoperazone-sulbactam, Amikacin and cephalosporins in sequence. The loss of antibiotic resistance was associated with the elimination of plasmid-borne antibiotic resistance genes; bla-TEM, bla-SHV, bla-CTX-M, qnrA, qnrB, qnrC and qnrD. Some E. coli strains did not show the removal of antibiotics resistance and plasmids, suggesting the presence of resistance genes on main chromosome and or non-curable plasmids.202337548194
205380.9998Replicon typing of plasmids in environmental Achromobacter sp. producing quinolone-resistant determinants. This study aimed to investigate the antimicrobial resistance profile to quinolones, the presence of quinolone-resistant determinants and the plasmid replicon typing in environmental Achromobacter sp. isolated from Brazil. Soil and water samples were used for bacterial isolation. The antimicrobial susceptibility testing was performed by minimum inhibitory concentration method. The detection of mutations in the quinolone resistance-determining regions (QRDR) genes, the presence of plasmid-mediated quinolone resistance (PMQR) genes, and plasmid replicons were performed by PCR. A total of 16 isolates was obtained from different cultures, cities, and states of Brazil. All isolates were non-susceptible to ciprofloxacin, norfloxacin, and levofloxacin. Some mutations in QRDR genes were found, including Gln-83-Leu and Asp-87-Asn in the gyrA and Gln-80-Ile and Asp-84-Ala in the parC. Different PMQR genes were detected, such as qnrA, qnrB, qnrS, oqxA, and oqxB. Three different plasmid families were detected, being most presented the ColE-like, followed by IncFIB and IncA/C. The presence of different PMQR genes and plasmids in the isolates of the present study shows that environmental bacteria can act as reservoir of important genes of resistance to fluoroquinolones, which is of great concern, due to the potential of horizontal dissemination of these genes. Besides that, there are no studies reporting these results in Achromobacter sp. isolates.201830357960
205090.9998Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. AIMS: To investigate the occurrence of fosfomycin-resistant (fos(R) ) bacteria in aquatic environments. METHODS AND RESULTS: A fos(R) strain of Enterobacter cloacae was isolated from a water sample collected at a site (50°41'33·44″N, 119°19'49·50″W) near the mouth of the Salmon River at Salmon Arm, in south-central British Columbia, Canada. The strain was identified by PCR screening for plasmid-borne, fosA-family amplicons, followed by selective plating. Sequencing of the resistance gene cloned using PCR primers to conserved flanking DNA revealed a new allele (95% amino acid identity to fosA), and I-Ceu I PFGE showed that it was chromosomally located. In Escherichia coli, the cloned DNA conferred a greater resistance to fosfomycin than its fosA counterpart. CONCLUSIONS: Gene fosA2 conferred fosfomycin resistance in an environmental isolate of Ent. cloacae. SIGNIFICANCE AND IMPACT OF THE STUDY: The repurposing of older antibiotics should be considered in the light of existing reservoirs of resistance genes in the environment.201121392044
5955100.9998Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates.200515715715
5926110.9998Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan.202235704076
5956120.9998Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. Seven (27%) of 26 gentamicin-resistant human clinical isolates of Escherichia coli were resistant to the veterinary aminoglycoside antibiotic apramycin. A gentamicin-resistant Klebsiella pneumoniae isolate from a patient infected with gentamicin/apramycin-resistant E. coli was also resistant to apramycin. DNA hybridisation studies showed that all gentamicin/apramycin-resistant isolates contained a gene encoding the enzyme 3-N-aminoglycoside acetyltransferase type IV (AAC[3]IV) that mediates resistance to gentamicin and apramycin in bacteria isolated from animals. Seven of the eight gentamicin/apramycin-resistant isolates were also resistant to the veterinary antihelminthic agent hygromycin B, a phenomenon observed previously in gentamicin/apramycin-resistant Enterobacteriaceae isolated from animals. Resistance to gentamicin/apramycin and hygromycin B was co-transferable in six of the isolates. Restriction enzyme analysis of plasmids in apramycin-resistant transconjugants derived from E. coli and K. pneumoniae isolates from the same patient were virtually identical, suggesting that inter-generic transfer of plasmids encoding apramycin resistance had occurred in vivo. These findings support the view that resistance to gentamicin and apramycin in clinical isolates of E. coli results from the spread of resistant organisms from animals to man, with subsequent inter-strain or inter-species spread, or both, of resistance genes on transferable plasmids.19948114074
3556130.9998Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens.201526259681
2059140.9997Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. AIMS: To isolate environmental bacteria capable of transforming fluoroquinolones to inactive molecules. METHODS AND RESULTS: Bacteria were isolated from the aerobic liquor of a wastewater treatment plant on a medium containing norfloxacin (100 mg l(-1)). Twenty-two isolates were highly resistant (minimal inhibitory concentration: 6.25-200 microg ml(-1)) to five fluoroquinolones and six of them were positive by PCR amplification for the aminoglycoside resistance gene aac(6')-Ib. Of these, only Escherichia coli strain LR09 had the ciprofloxacin-acetylating variant gene aac(6')-Ib-cr; HPLC and mass spectrometry showed that this strain transformed both ciprofloxacin and norfloxacin by N-acetylation. This bacterium also had mutations in the quinolone-resistance determining regions of the gyrA and parC genes. CONCLUSIONS: An E. coli isolate from wastewater, which possessed at least two distinct fluoroquinolone resistance mechanisms, inactivated ciprofloxacin and norfloxacin by N-acetylation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of N-acetylation of fluoroquinolones by an aac(6')-Ib-cr-containing bacterium from an environmental source.200919200322
2071150.9997Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase. Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems.201627012919
2039160.9997Prevalence and characteristics of quinolone resistance in Escherichia coli in veal calves. Quinolone resistance is studied and reported increasingly in isolates from humans, food-producing animals and companion animals. Resistance can be caused by chromosomal mutations in topoisomerase genes, plasmid-mediated resistance genes, and active transport through efflux pumps. Cross sectional data on quinolone resistance mechanisms in non-pathogenic bacteria from healthy veal calves is limited. The purpose of this study was to determine the prevalence and characteristics of quinolone resistance mechanisms in Escherichia coli isolates from veal calves, after more than 20 years of quinolone usage in veal calves. MIC values were determined for all isolates collected as part of a national surveillance program on antimicrobial resistance in commensal bacteria in food-producing animals in The Netherlands. From the strains collected from veal calves in 2007 (n=175) all isolates with ciprofloxacin MIC ≥ 0.125 mg/L (n=25) were selected for this study, and screened for the presence of known quinolone resistance determinants. In this selection only chromosomal mutations in the topoisomerase type II and IV genes were detected. The number of mutations found per isolate correlated with an increasing ciprofloxacin MIC. No plasmid-mediated quinolone resistance genes were found. The contribution of efflux pumps varied from no contribution to a 16-fold increase in susceptibility. No correlation was found with the presence of resistance genes of other antimicrobial classes, even though all quinolone non-wild type isolates were resistant to 3 or more classes of antibiotics other than quinolones. Over twenty years of quinolone usage in veal calves in The Netherlands did not result in a widespread occurrence of plasmid-mediated quinolone resistance, limiting the transmission of quinolone resistance to clonal distribution.201222041448
5553170.9997Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes in some seafood-associated nontyphoidal isolates of Salmonella in south-west coast of India. AIMS: To study the antibiogram of 40 seafood isolates of Salmonella and use of PCR to detect the presence of integrons and genes coding for antibiotic resistance. METHODS AND RESULTS: In this study, 40 isolates of Salmonella were used for antibiogram analysis. The multidrug-resistant isolates were analyzed for the presence of integron using integron-specific primers. Twenty-five percentage of the isolates were multidrug resistant while 67·50% were resistant to at least two antibiotics. Antibiotic resistance genes catA1 and tetA were present in 57·52 and 60%, respectively. Although widespread presence of genes was observed, only 26·08% of the catA1-carrying isolates exhibited phenotypic resistance against the respective antibiotic. Integrons present in representative isolates of Salmonella Weltevreden and Salmonella Newport were sequenced. The former contained class 1 integron with a single gene dfrA7 in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene, while the later contained class 1 integron with dhfrA1, OrfC, in the integron cassette and an adjacent dihydropteroate synthetase gene along with the usual quaternary ammonium compound resistance gene. CONCLUSIONS: This study demonstrates the presence of silent antibiotic resistance genes and class I integrons in seafood-associated Salmonella strains. The study also demonstrates the first report of class I integron in Salm. Weltevreden. Detection of catA1 genes in phenotypically sensitive bacteria suggests that these could be reservoirs in the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The manuscript provides novel results describing the existence of a high rate of antibiotic resistance in the Salmonella populations prevailing in environmental sources as well as an absence of correspondence between the presence of antibiotic resistance genes, and the exhibition of a the corresponding phenotypic trait of resistance against the respective antibiotic compound was observed. In addition, the manuscript reports the presence of the class I integron in Salm. Weltevreden.201222443444
2070180.9997Complex integrons containing qnrB4-ampC (bla(DHA-1)) in plasmids of multidrug-resistant Citrobacter freundii from wastewater. Microbial populations in wastewater treatment plants (WWTPs) are increasingly being recognized as environmental reservoirs of antibiotic resistance genes. PCR amplicons for plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS were recorded in samples from a WWTP in Vancouver, British Columbia. Six strains of ciprofloxacin-resistant Citrobacter freundii were isolated and found to carry mutations in gyrA and parC, as well as multiple plasmid-borne resistance genes, collectively including qnrB; aac(6')-Ib-cr; β-lactamase-encoding genes from molecular classes A (blaTEM-1), C (ampC), D (blaOXA-1, blaOXA-10); and genes for resistance to 5 other types of antibiotics. In 3 strains, large (>60 kb) plasmids carried qnrB4 and ampC as part of a complex integron in a 14 kb arrangement that has been reported worldwide but, until recently, only among pathogenic strains of Klebsiella. Analysis of single-nucleotide polymorphisms in the qnrB4-ampC regions infers 2 introductions into the WWTP environment. These results suggest recent passage of plasmid-borne fluoroquinolone and β-lactam resistance genes from pathogens to bacteria that may be indigenous inhabitants of WWTPs, thus contributing to an environmental pool of antibiotic resistance.201323461518
2063190.9997Nalidixic acid-a good marker of fluoroquinolone resistance mechanisms in Escherichia coli. The purpose of this study was to evaluate how ciprofloxacin, pefloxacin, and nalidixic acid disks perform in screening fluoroquinolone resistance mechanisms in 278 Escherichia coli isolates collected from a prospective clinical material. Antimicrobial susceptibility testing of ciprofloxacin, pefloxacin, and nalidixic acid was performed with the disk diffusion method. PCR-based and sequencing methods were used to detect chromosomal mutations in the gyrA and parC genes and the presence of plasmid-mediated qnr and aac(6')-1b-cr genes. In addition, whole-genome sequencing was used to confirm these results. Our results show that fluoroquinolone resistance mechanisms were discovered, even in ciprofloxacin-susceptible isolates, and plasmid-mediated low-level fluoroquinolone resistance is easily missed if only ciprofloxacin disk is used. E. coli strains with chromosomal gyrA and/or parC mutations were well detected with pefloxacin disk. However, nalidixic acid was a superior tool to detect and differentiate between low- (plasmid-mediated) and high-level (chromosomal mutations) fluoroquinolone resistance in E. coli. Thus, more clinical studies are needed to evaluate the clinical relevance of fluoroquinolone resistance mechanisms in enteric bacteria and pathogens that show potential but are not yet phenotypically fluoroquinolone-resistant. IMPORTANCE: We show in our clinical setting that fluoroquinolone resistance mechanisms are discovered, even among phenotypically fluoroquinolone-susceptible Escherichia coli isolates. When plasmid-mediated quinolone-resistance determinants are present, they are a potential risk for treatment failures due to accumulation of resistance mechanisms during the antimicrobial treatment. Therefore, when it is clinically relevant, fluoroquinolone resistance mechanisms in E. coli should be monitored more closely, and we also recommend testing nalidixic acid susceptibility.202540401973